1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
//////////////////////////////////////////////////////////////////////
//// ////
//// File name "tx_dequeue.v" ////
//// ////
//// This file is part of the "10GE MAC" project ////
//// http://www.opencores.org/cores/xge_mac/ ////
//// ////
//// Author(s): ////
//// - A. Tanguay (antanguay@opencores.org) ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2008 AUTHORS. All rights reserved. ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`include "defines.v"
module tx_dequeue(/*AUTOARG*/
// Outputs
txdfifo_ren, txhfifo_ren, txhfifo_wdata, txhfifo_wstatus,
txhfifo_wen, xgmii_txd, xgmii_txc, status_txdfifo_udflow_tog,
// Inputs
clk_xgmii_tx, reset_xgmii_tx_n, ctrl_tx_enable_ctx,
status_local_fault_ctx, status_remote_fault_ctx, txdfifo_rdata,
txdfifo_rstatus, txdfifo_rempty, txdfifo_ralmost_empty,
txhfifo_rdata, txhfifo_rstatus, txhfifo_rempty,
txhfifo_ralmost_empty, txhfifo_wfull, txhfifo_walmost_full
);
`include "CRC32_D64.v"
`include "CRC32_D8.v"
`include "utils.v"
input clk_xgmii_tx;
input reset_xgmii_tx_n;
input ctrl_tx_enable_ctx;
input status_local_fault_ctx;
input status_remote_fault_ctx;
input [63:0] txdfifo_rdata;
input [7:0] txdfifo_rstatus;
input txdfifo_rempty;
input txdfifo_ralmost_empty;
input [63:0] txhfifo_rdata;
input [7:0] txhfifo_rstatus;
input txhfifo_rempty;
input txhfifo_ralmost_empty;
input txhfifo_wfull;
input txhfifo_walmost_full;
output txdfifo_ren;
output txhfifo_ren;
output [63:0] txhfifo_wdata;
output [7:0] txhfifo_wstatus;
output txhfifo_wen;
output [63:0] xgmii_txd;
output [7:0] xgmii_txc;
output status_txdfifo_udflow_tog;
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg status_txdfifo_udflow_tog;
reg txdfifo_ren;
reg txhfifo_ren;
reg [63:0] txhfifo_wdata;
reg txhfifo_wen;
reg [7:0] txhfifo_wstatus;
reg [7:0] xgmii_txc;
reg [63:0] xgmii_txd;
// End of automatics
/*AUTOWIRE*/
reg [63:0] xgxs_txd;
reg [7:0] xgxs_txc;
reg [63:0] next_xgxs_txd;
reg [7:0] next_xgxs_txc;
reg [2:0] curr_state_enc;
reg [2:0] next_state_enc;
reg [0:0] curr_state_pad;
reg [0:0] next_state_pad;
reg start_on_lane0;
reg next_start_on_lane0;
reg [2:0] ifg_deficit;
reg [2:0] next_ifg_deficit;
reg ifg_4b_add;
reg next_ifg_4b_add;
reg ifg_8b_add;
reg next_ifg_8b_add;
reg ifg_8b2_add;
reg next_ifg_8b2_add;
reg [7:0] eop;
reg [7:0] next_eop;
reg [63:32] xgxs_txd_barrel;
reg [7:4] xgxs_txc_barrel;
reg [63:0] txhfifo_rdata_d1;
reg [13:0] byte_cnt;
reg [31:0] crc32_d64;
reg [31:0] crc32_d8;
reg [31:0] crc32_tx;
reg [63:0] shift_crc_data;
reg [3:0] shift_crc_eop;
reg [3:0] shift_crc_cnt;
reg [31:0] crc_data;
reg frame_available;
reg next_frame_available;
reg [63:0] next_txhfifo_wdata;
reg [7:0] next_txhfifo_wstatus;
reg next_txhfifo_wen;
reg txdfifo_ren_d1;
parameter [2:0]
SM_IDLE = 3'd0,
SM_PREAMBLE = 3'd1,
SM_TX = 3'd2,
SM_EOP = 3'd3,
SM_TERM = 3'd4,
SM_TERM_FAIL = 3'd5,
SM_IFG = 3'd6;
parameter [0:0]
SM_PAD_EQ = 1'd0,
SM_PAD_PAD = 1'd1;
//---
// RC layer
always @(posedge clk_xgmii_tx or negedge reset_xgmii_tx_n) begin
if (reset_xgmii_tx_n == 1'b0) begin
xgmii_txd <= {8{`IDLE}};
xgmii_txc <= 8'hff;
end
else begin
//---
// RC Layer, insert local or remote fault messages based on status
// of fault state-machine
if (status_local_fault_ctx) begin
// If local fault detected, send remote fault message to
// link partner
xgmii_txd <= {`REMOTE_FAULT, 8'h0, 8'h0, `SEQUENCE,
`REMOTE_FAULT, 8'h0, 8'h0, `SEQUENCE};
xgmii_txc <= {4'b0001, 4'b0001};
end
else if (status_remote_fault_ctx) begin
// If remote fault detected, inhibit transmission and send
// idle codes
xgmii_txd <= {8{`IDLE}};
xgmii_txc <= 8'hff;
end
else begin
xgmii_txd <= xgxs_txd;
xgmii_txc <= xgxs_txc;
end
end
end
always @(posedge clk_xgmii_tx or negedge reset_xgmii_tx_n) begin
if (reset_xgmii_tx_n == 1'b0) begin
curr_state_enc <= SM_IDLE;
start_on_lane0 <= 1'b1;
ifg_deficit <= 3'b0;
ifg_4b_add <= 1'b0;
ifg_8b_add <= 1'b0;
ifg_8b2_add <= 1'b0;
eop <= 8'b0;
txhfifo_rdata_d1 <= 64'b0;
xgxs_txd_barrel <= {4{`IDLE}};
xgxs_txc_barrel <= 4'hf;
frame_available <= 1'b0;
xgxs_txd <= {8{`IDLE}};
xgxs_txc <= 8'hff;
status_txdfifo_udflow_tog <= 1'b0;
end
else begin
curr_state_enc <= next_state_enc;
start_on_lane0 <= next_start_on_lane0;
ifg_deficit <= next_ifg_deficit;
ifg_4b_add <= next_ifg_4b_add;
ifg_8b_add <= next_ifg_8b_add;
ifg_8b2_add <= next_ifg_8b2_add;
eop <= next_eop;
txhfifo_rdata_d1 <= txhfifo_rdata;
xgxs_txd_barrel <= next_xgxs_txd[63:32];
xgxs_txc_barrel <= next_xgxs_txc[7:4];
frame_available <= next_frame_available;
//---
// Barrel shifter. Previous stage always align packet with LANE0.
// This stage allow us to shift packet to align with LANE4 if needed
// for correct inter frame gap (IFG).
if (next_start_on_lane0) begin
xgxs_txd <= next_xgxs_txd;
xgxs_txc <= next_xgxs_txc;
end
else begin
xgxs_txd <= {next_xgxs_txd[31:0], xgxs_txd_barrel};
xgxs_txc <= {next_xgxs_txc[3:0], xgxs_txc_barrel};
end
//---
// FIFO errors, used to generate interrupts.
if (txdfifo_ren && txdfifo_rempty) begin
status_txdfifo_udflow_tog <= ~status_txdfifo_udflow_tog;
end
end
end
always @(/*AS*/crc32_tx or ctrl_tx_enable_ctx or curr_state_enc or eop
or frame_available or ifg_4b_add or ifg_8b2_add or ifg_8b_add
or ifg_deficit or start_on_lane0 or status_local_fault_ctx
or txhfifo_ralmost_empty or txhfifo_rdata_d1
or txhfifo_rempty or txhfifo_rstatus) begin
next_state_enc = curr_state_enc;
next_start_on_lane0 = start_on_lane0;
next_ifg_deficit = ifg_deficit;
next_ifg_4b_add = ifg_4b_add;
next_ifg_8b_add = ifg_8b_add;
next_ifg_8b2_add = ifg_8b2_add;
next_eop = eop;
next_xgxs_txd = {8{`IDLE}};
next_xgxs_txc = 8'hff;
txhfifo_ren = 1'b0;
next_frame_available = frame_available;
case (curr_state_enc)
SM_IDLE:
begin
// Wait for frame to be available. There should be a least N bytes in the
// data fifo or a crc in the control fifo. The N bytes in the data fifo
// give time to the enqueue engine to calculate crc and write it to the
// control fifo. If crc is already in control fifo we can start transmitting
// with no concern. Transmission is inhibited if local or remote faults
// are detected.
if (ctrl_tx_enable_ctx && frame_available &&
!status_local_fault_ctx && !status_local_fault_ctx) begin
txhfifo_ren = 1'b1;
next_state_enc = SM_PREAMBLE;
end
else begin
next_frame_available = !txhfifo_ralmost_empty;
next_ifg_4b_add = 1'b0;
end
end
SM_PREAMBLE:
begin
// On reading SOP from fifo, send SFD and preamble characters
if (txhfifo_rstatus[`TXSTATUS_SOP]) begin
next_xgxs_txd = {`SFD, {6{`PREAMBLE}}, `START};
next_xgxs_txc = 8'h01;
txhfifo_ren = 1'b1;
next_state_enc = SM_TX;
end
else begin
next_frame_available = 1'b0;
next_state_enc = SM_IDLE;
end
// Depending on deficit idle count calculations, add 4 bytes
// or IFG or not. This will determine on which lane start the
// next frame.
if (ifg_4b_add) begin
next_start_on_lane0 = 1'b0;
end
else begin
next_start_on_lane0 = 1'b1;
end
end
SM_TX:
begin
next_xgxs_txd = txhfifo_rdata_d1;
next_xgxs_txc = 8'h00;
txhfifo_ren = 1'b1;
// Wait for EOP indication to be read from the fifo, then
// transition to next state.
if (txhfifo_rstatus[`TXSTATUS_EOP]) begin
txhfifo_ren = 1'b0;
next_frame_available = !txhfifo_ralmost_empty;
next_state_enc = SM_EOP;
end
else if (txhfifo_rempty || txhfifo_rstatus[`TXSTATUS_SOP]) begin
// Failure condition, we did not see EOP and there
// is no more data in fifo or SOP, force end of packet transmit.
next_state_enc = SM_TERM_FAIL;
end
next_eop[0] = txhfifo_rstatus[2:0] == 3'd1;
next_eop[1] = txhfifo_rstatus[2:0] == 3'd2;
next_eop[2] = txhfifo_rstatus[2:0] == 3'd3;
next_eop[3] = txhfifo_rstatus[2:0] == 3'd4;
next_eop[4] = txhfifo_rstatus[2:0] == 3'd5;
next_eop[5] = txhfifo_rstatus[2:0] == 3'd6;
next_eop[6] = txhfifo_rstatus[2:0] == 3'd7;
next_eop[7] = txhfifo_rstatus[2:0] == 3'd0;
end
SM_EOP:
begin
// Insert TERMINATE character in correct lane depending on position
// of EOP read from fifo. Also insert CRC read from control fifo.
if (eop[0]) begin
next_xgxs_txd = {{2{`IDLE}}, `TERMINATE,
crc32_tx[31:0], txhfifo_rdata_d1[7:0]};
next_xgxs_txc = 8'b11100000;
end
if (eop[1]) begin
next_xgxs_txd = {`IDLE, `TERMINATE,
crc32_tx[31:0], txhfifo_rdata_d1[15:0]};
next_xgxs_txc = 8'b11000000;
end
if (eop[2]) begin
next_xgxs_txd = {`TERMINATE, crc32_tx[31:0], txhfifo_rdata_d1[23:0]};
next_xgxs_txc = 8'b10000000;
end
if (eop[3]) begin
next_xgxs_txd = {crc32_tx[31:0], txhfifo_rdata_d1[31:0]};
next_xgxs_txc = 8'b00000000;
end
if (eop[4]) begin
next_xgxs_txd = {crc32_tx[23:0], txhfifo_rdata_d1[39:0]};
next_xgxs_txc = 8'b00000000;
end
if (eop[5]) begin
next_xgxs_txd = {crc32_tx[15:0], txhfifo_rdata_d1[47:0]};
next_xgxs_txc = 8'b00000000;
end
if (eop[6]) begin
next_xgxs_txd = {crc32_tx[7:0], txhfifo_rdata_d1[55:0]};
next_xgxs_txc = 8'b00000000;
end
if (eop[7]) begin
next_xgxs_txd = {txhfifo_rdata_d1[63:0]};
next_xgxs_txc = 8'b00000000;
end
if (!frame_available) begin
// If there is not another frame ready to be transmitted, interface
// will go idle and idle deficit idle count calculation is irrelevant.
// Set deficit to 0.
next_ifg_deficit = 3'b0;
end
else begin
// Idle deficit count calculated based on number of "wasted" bytes
// between TERMINATE and alignment of next frame in LANE0.
next_ifg_deficit = ifg_deficit +
{2'b0, eop[0] | eop[4]} +
{1'b0, eop[1] | eop[5], 1'b0} +
{1'b0, eop[2] | eop[6],
eop[2] | eop[6]};
end
// IFG corrections based on deficit count and previous starting lane
// Calculated based on following table:
//
// DIC=0 DIC=1 DIC=2 DIC=3
// ------------- ------------- ------------- -------------
// PktLen IFG Next IFG Next IFG Next IFG Next
// Modulus Length DIC Length DIC Length DIC Length DIC
// -----------------------------------------------------------------------
// 0 12 0 12 1 12 2 12 3
// 1 11 1 11 2 11 3 15 0
// 2 10 2 10 3 14 0 14 1
// 3 9 3 13 0 13 1 13 2
//
//
// In logic it translates into adding 4, 8, or 12 bytes of IFG relative
// to LANE0.
// IFG and Add columns assume no deficit applied
// IFG+DIC and Add+DIC assume deficit must be applied
//
// Start lane 0 Start lane 4
// EOP Pads IFG IFG+DIC Add Add+DIC Add Add IFG
// 0 3 11 15 8 12 12 16
// 1 2 10 14 8 12 12 16
// 2 1 9 13 8 12 12 16
// 3 8 12 12 4 4 8 8
// 4 7 11 15 4 8 8 12
// 5 6 10 14 4 8 8 12
// 6 5 9 13 4 8 8 12
// 7 4 12 12 8 8 12 12
if (!frame_available) begin
// If there is not another frame ready to be transmitted, interface
// will go idle and idle deficit idle count calculation is irrelevant.
next_ifg_4b_add = 1'b0;
next_ifg_8b_add = 1'b0;
next_ifg_8b2_add = 1'b0;
end
else if (next_ifg_deficit[2] == ifg_deficit[2]) begin
// Add 4 bytes IFG
next_ifg_4b_add = (eop[0] & !start_on_lane0) |
(eop[1] & !start_on_lane0) |
(eop[2] & !start_on_lane0) |
(eop[3] & start_on_lane0) |
(eop[4] & start_on_lane0) |
(eop[5] & start_on_lane0) |
(eop[6] & start_on_lane0) |
(eop[7] & !start_on_lane0);
// Add 8 bytes IFG
next_ifg_8b_add = (eop[0]) |
(eop[1]) |
(eop[2]) |
(eop[3] & !start_on_lane0) |
(eop[4] & !start_on_lane0) |
(eop[5] & !start_on_lane0) |
(eop[6] & !start_on_lane0) |
(eop[7]);
// Add another 8 bytes IFG
next_ifg_8b2_add = 1'b0;
end
else begin
// Add 4 bytes IFG
next_ifg_4b_add = (eop[0] & start_on_lane0) |
(eop[1] & start_on_lane0) |
(eop[2] & start_on_lane0) |
(eop[3] & start_on_lane0) |
(eop[4] & !start_on_lane0) |
(eop[5] & !start_on_lane0) |
(eop[6] & !start_on_lane0) |
(eop[7] & !start_on_lane0);
// Add 8 bytes IFG
next_ifg_8b_add = (eop[0]) |
(eop[1]) |
(eop[2]) |
(eop[3] & !start_on_lane0) |
(eop[4]) |
(eop[5]) |
(eop[6]) |
(eop[7]);
// Add another 8 bytes IFG
next_ifg_8b2_add = (eop[0] & !start_on_lane0) |
(eop[1] & !start_on_lane0) |
(eop[2] & !start_on_lane0);
end
if (|eop[2:0]) begin
if (frame_available) begin
// Next state depends on number of IFG bytes to be inserted.
// Skip idle state if needed.
if (next_ifg_8b2_add) begin
next_state_enc = SM_IFG;
end
else if (next_ifg_8b_add) begin
next_state_enc = SM_IDLE;
end
else begin
txhfifo_ren = 1'b1;
next_state_enc = SM_PREAMBLE;
end
end
else begin
next_state_enc = SM_IFG;
end
end
if (|eop[7:3]) begin
next_state_enc = SM_TERM;
end
end
SM_TERM:
begin
// Insert TERMINATE character in correct lane depending on position
// of EOP read from fifo. Also insert CRC read from control fifo.
if (eop[3]) begin
next_xgxs_txd = {{7{`IDLE}}, `TERMINATE};
next_xgxs_txc = 8'b11111111;
end
if (eop[4]) begin
next_xgxs_txd = {{6{`IDLE}}, `TERMINATE, crc32_tx[31:24]};
next_xgxs_txc = 8'b11111110;
end
if (eop[5]) begin
next_xgxs_txd = {{5{`IDLE}}, `TERMINATE, crc32_tx[31:16]};
next_xgxs_txc = 8'b11111100;
end
if (eop[6]) begin
next_xgxs_txd = {{4{`IDLE}}, `TERMINATE, crc32_tx[31:8]};
next_xgxs_txc = 8'b11111000;
end
if (eop[7]) begin
next_xgxs_txd = {{3{`IDLE}}, `TERMINATE, crc32_tx[31:0]};
next_xgxs_txc = 8'b11110000;
end
// Next state depends on number of IFG bytes to be inserted.
// Skip idle state if needed.
if (frame_available && !ifg_8b_add) begin
txhfifo_ren = 1'b1;
next_state_enc = SM_PREAMBLE;
end
else if (frame_available) begin
next_state_enc = SM_IDLE;
end
else begin
next_state_enc = SM_IFG;
end
end
SM_TERM_FAIL:
begin
next_xgxs_txd = {{7{`IDLE}}, `TERMINATE};
next_xgxs_txc = 8'b11111111;
next_state_enc = SM_IFG;
end
SM_IFG:
begin
next_state_enc = SM_IDLE;
end
default:
begin
next_state_enc = SM_IDLE;
end
endcase
end
always @(/*AS*/crc32_d64 or txhfifo_wen or txhfifo_wstatus) begin
if (txhfifo_wen && txhfifo_wstatus[`TXSTATUS_SOP]) begin
crc_data = 32'hffffffff;
end
else begin
crc_data = crc32_d64;
end
end
always @(/*AS*/byte_cnt or curr_state_pad or txdfifo_rdata
or txdfifo_rempty or txdfifo_ren_d1 or txdfifo_rstatus
or txhfifo_walmost_full) begin
next_state_pad = curr_state_pad;
next_txhfifo_wdata = txdfifo_rdata;
next_txhfifo_wstatus = txdfifo_rstatus;
txdfifo_ren = 1'b0;
next_txhfifo_wen = 1'b0;
case (curr_state_pad)
SM_PAD_EQ: begin
//---
// If room availabe in hoding fifo and data available in
// data fifo, transfer data words. If transmit state machine
// is reading from fifo we can assume room will be available.
if (!txhfifo_walmost_full) begin
txdfifo_ren = !txdfifo_rempty;
end
//---
// This logic dependent on read during previous cycle.
if (txdfifo_ren_d1) begin
next_txhfifo_wen = 1'b1;
// On EOP, decide if padding is required for this packet.
if (txdfifo_rstatus[`TXSTATUS_EOP]) begin
if (byte_cnt < 14'd56) begin
next_txhfifo_wstatus = `TXSTATUS_NONE;
txdfifo_ren = 1'b0;
next_state_pad = SM_PAD_PAD;
end
else if (byte_cnt == 14'd56 &&
(txdfifo_rstatus[2:0] == 3'd1 ||
txdfifo_rstatus[2:0] == 3'd2 ||
txdfifo_rstatus[2:0] == 3'd3)) begin
// Pad up to LANE3, keep the other 4 bytes for crc that will
// be inserted by dequeue engine.
next_txhfifo_wstatus[2:0] = 3'd4;
// Pad end bytes with zeros.
if (txdfifo_rstatus[2:0] == 3'd1)
next_txhfifo_wdata[31:8] = 24'b0;
if (txdfifo_rstatus[2:0] == 3'd2)
next_txhfifo_wdata[31:16] = 16'b0;
if (txdfifo_rstatus[2:0] == 3'd3)
next_txhfifo_wdata[31:24] = 8'b0;
txdfifo_ren = 1'b0;
end
else begin
txdfifo_ren = 1'b0;
end
end
end
end
SM_PAD_PAD: begin
//---
// Pad packet to 64 bytes by writting zeros to holding fifo.
if (!txhfifo_walmost_full) begin
next_txhfifo_wdata = 64'b0;
next_txhfifo_wstatus = `TXSTATUS_NONE;
next_txhfifo_wen = 1'b1;
if (byte_cnt == 14'd56) begin
// Pad up to LANE3, keep the other 4 bytes for crc that will
// be inserted by dequeue engine.
next_txhfifo_wstatus[`TXSTATUS_EOP] = 1'b1;
next_txhfifo_wstatus[2:0] = 3'd4;
next_state_pad = SM_PAD_EQ;
end
end
end
default:
begin
next_state_pad = SM_PAD_EQ;
end
endcase
end
always @(posedge clk_xgmii_tx or negedge reset_xgmii_tx_n) begin
if (reset_xgmii_tx_n == 1'b0) begin
curr_state_pad <= SM_PAD_EQ;
txdfifo_ren_d1 <= 1'b0;
txhfifo_wdata <= 64'b0;
txhfifo_wstatus <= 8'b0;
txhfifo_wen <= 1'b0;
byte_cnt <= 14'b0;
shift_crc_data <= 64'b0;
shift_crc_eop <= 4'b0;
shift_crc_cnt <= 4'b0;
end
else begin
curr_state_pad <= next_state_pad;
txdfifo_ren_d1 <= txdfifo_ren;
txhfifo_wdata <= next_txhfifo_wdata;
txhfifo_wstatus <= next_txhfifo_wstatus;
txhfifo_wen <= next_txhfifo_wen;
//---
// Reset byte count on SOP
if (next_txhfifo_wen) begin
if (next_txhfifo_wstatus[`TXSTATUS_SOP]) begin
byte_cnt <= 14'd8;
end
else begin
byte_cnt <= byte_cnt + 14'd8;
end
end
//---
// Calculate CRC as data is written to holding fifo. The holding fifo creates
// a delay that allow the CRC calculation to complete before the end of the frame
// is ready to be transmited.
if (txhfifo_wen) begin
crc32_d64 <= nextCRC32_D64(reverse_64b(txhfifo_wdata), crc_data);
end
if (txhfifo_wen && txhfifo_wstatus[`TXSTATUS_EOP]) begin
// Last bytes calculated 8-bit at a time instead of 64-bit. Start
// this process at the end of the frame.
crc32_d8 <= crc32_d64;
shift_crc_data <= txhfifo_wdata;
shift_crc_cnt <= 4'd9;
if (txhfifo_wstatus[2:0] == 3'b0) begin
shift_crc_eop <= 4'd8;
end
else begin
shift_crc_eop <= {1'b0, txhfifo_wstatus[2:0]};
end
end
else if (shift_crc_eop != 4'b0) begin
// Complete crc calculation 8-bit at a time until finished. This can
// be 1 to 8 bytes long.
crc32_d8 <= nextCRC32_D8(reverse_8b(shift_crc_data[7:0]), crc32_d8);
shift_crc_data <= {8'b0, shift_crc_data[63:8]};
shift_crc_eop <= shift_crc_eop - 4'd1;
end
//---
// Update CRC register at the end of calculation. Always update after 8
// cycles for deterministic results, even if a single byte was present in
// last data word.
if (shift_crc_cnt == 4'b1) begin
crc32_tx <= ~reverse_32b(crc32_d8);
end
else begin
shift_crc_cnt <= shift_crc_cnt - 4'd1;
end
end
end
endmodule
|