1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
#include "genome_state.hpp"
#include "utility.hpp"
#include <signal.h>
namespace vg {
using namespace std;
SnarlState::SnarlState(const NetGraph* graph) : graph(graph) {
// Nothing to do!
}
size_t SnarlState::size() const {
return haplotypes.size();
}
void SnarlState::dump() const {
// First dump the haplotypes
for (size_t i = 0; i < haplotypes.size(); i++) {
cerr << "Haplotype " << i << ":";
for (auto& record : haplotypes.at(i)) {
cerr << " " << graph->get_id(record.first) << " " << graph->get_is_reverse(record.first)
<< " at lane " << record.second << ",";
}
cerr << endl;
}
// Then the lanes index
for (auto& kv : net_node_lanes) {
cerr << "Net node " << graph->get_id(kv.first) << " " << graph->get_is_reverse(kv.first) << " lanes:" << endl;
for (size_t i = 0; i < kv.second.size(); i++) {
cerr << "\tLane " << i << ": " << graph->get_id(kv.second.at(i)->first)
<< " " << graph->get_is_reverse(kv.second.at(i)->first)
<< " at lane " << kv.second.at(i)->second << endl;
}
}
}
void SnarlState::trace(size_t overall_lane, bool backward, const function<void(const handle_t&, size_t)>& iteratee) const {
// Get the haplotype we want to loop over
auto& haplotype = haplotypes.at(overall_lane);
auto process_traversal = [&](const pair<handle_t, size_t>& handle_and_lane) {
// For every handle in the haplotype, yield it either forward or
// backward as determined by our traversal direction.
iteratee(backward ? graph->flip(handle_and_lane.first) : handle_and_lane.first, handle_and_lane.second);
};
if (backward) {
// If we're going backward, go in reverse order.
// See <https://stackoverflow.com/a/23094303>
for_each(haplotype.rbegin(), haplotype.rend(), process_traversal);
} else {
// Otherwise go in forward order
for_each(haplotype.begin(), haplotype.end(), process_traversal);
}
}
void SnarlState::insert(const vector<pair<handle_t, size_t>>& haplotype) {
if (haplotype.empty()) {
throw runtime_error("Tried to add an empty haplotype to a snarl");
}
if (haplotype.front().first != graph->get_start() || haplotype.back().first != graph->get_end()) {
// Fail if it's not actually from start to end.
stringstream message;
message << "Tried to add a haplotype to a snarl ("
<< graph->get_id(graph->get_start()) << " " << graph->get_is_reverse(graph->get_start())
<< " -> " << graph->get_id(graph->get_end()) << " " << graph->get_is_reverse(graph->get_end())
<< ") that starts at "
<< graph->get_id(haplotype.front().first) << " " << graph->get_is_reverse(haplotype.front().first)
<< " and ends at "
<< graph->get_id(haplotype.back().first) << " " << graph->get_is_reverse(haplotype.back().first)
<< " and is not a start-to-end traversal of the snarl";
throw runtime_error(message.str());
}
if (haplotype.front().second != haplotype.back().second) {
// Fail if we try to put something at two different overall lanes
throw runtime_error("Tried to insert a haplotype with different lanes at the snarl start and end nodes.");
}
// TODO: all these inserts at indexes are O(N).
// Insert the whole traversal into haplotypes at the appropriate index for the overall lane
size_t overall_lane = haplotype.front().second;
assert(overall_lane == haplotype.back().second);
auto inserted = haplotypes.emplace(haplotypes.begin() + overall_lane, haplotype);
for (auto it = inserted->begin(); it != inserted->end(); ++it) {
// For each handle visit
auto& handle_visit = *it;
// Insert the iterator record at the right place in net_node_lanes
auto& node_lanes = net_node_lanes[graph->forward(handle_visit.first)];
auto lane_iterator = node_lanes.emplace(node_lanes.begin() + handle_visit.second, it);
// Look at whatever is after the lane we just inserted
++lane_iterator;
while (lane_iterator != node_lanes.end()) {
// Update all the subsequent records in that net node's lane list and bump up their internal lane assignments
// First dereference to get the iterator that points to the actual
// record, then dereference that, and increment the lane number.
(*(*lane_iterator)).second++;
++lane_iterator;
}
}
}
const vector<pair<handle_t, size_t>>& SnarlState::append(const vector<handle_t>& haplotype, bool backward) {
assert(!haplotype.empty());
if (backward) {
if (haplotype.back() != graph->flip(graph->get_start()) || haplotype.front() != graph->flip(graph->get_end())) {
// Fail if it's not actually from end to start.
throw runtime_error("Tried to add a haplotype backward to a snarl that is not a end-to-start traversal of that snarl.");
}
} else {
if (haplotype.front() != graph->get_start() || haplotype.back() != graph->get_end()) {
// Fail if it's not actually from start to end.
throw runtime_error("Tried to add a haplotype forward to a snarl that is not a start-to-end traversal of that snarl.");
}
}
// Make a new haplotype at the end of our haplotypes vector that's big enough.
haplotypes.emplace_back(haplotype.size());
auto& inserted = haplotypes.back();
for (size_t i = backward ? (haplotype.size() - 1) : 0;
backward ? (i != (size_t) -1) : i < haplotype.size();
backward ? i-- : i++) {
// For each position in the haplotype, going in the correct direction
// Get the handle we want to insert
auto handle = haplotype.at(i);
if (backward) {
// If we're going backward we need to insert everything the other
// way around
handle = graph->flip(handle);
}
// Work out where we are putting it. We should insert left to right when
// going forward, and right to left when going backward.
auto inserted_iterator = inserted.begin() + (backward ? haplotype.size() - 1 - i : i);
// Save the handle
inserted_iterator->first = handle;
// Find the appropriate node lanes collection
auto& node_lanes = net_node_lanes[graph->forward(handle)];
// Save the local lane assignment
inserted_iterator->second = node_lanes.size();
// And do the insert
node_lanes.emplace_back(inserted_iterator);
#ifdef debug
cerr << "At haplotype position " << i << "/" << haplotype.size()
<< " inserted " << graph->get_id(handle) << " " << graph->get_is_reverse(handle)
<< " at lane " << inserted_iterator->second << "/" << node_lanes.size() << endl;
#endif
}
// Return the completed vector with the lane annotations.
return inserted;
}
const vector<pair<handle_t, size_t>>& SnarlState::insert(size_t overall_lane, const vector<handle_t>& haplotype, bool backward) {
assert(!haplotype.empty());
if (backward) {
if (haplotype.back() != graph->flip(graph->get_start()) || haplotype.front() != graph->flip(graph->get_end())) {
// Fail if it's not actually from end to start.
throw runtime_error("Tried to add a haplotype backward to a snarl that is not a end-to-start traversal of that snarl.");
}
} else {
if (haplotype.front() != graph->get_start() || haplotype.back() != graph->get_end()) {
// Fail if it's not actually from start to end.
throw runtime_error("Tried to add a haplotype forward to a snarl that is not a start-to-end traversal of that snarl.");
}
}
// Insert a haplotype record at the specified overall lane that's big enough.
auto& inserted = *haplotypes.emplace(haplotypes.begin() + overall_lane, haplotype.size());
for (size_t i = backward ? (haplotype.size() - 1) : 0;
backward ? (i != (size_t) -1) : i < haplotype.size();
backward ? i-- : i++) {
// For each position in the haplotype, going in the correct direction
// Get the handle we want to insert
auto handle = haplotype.at(i);
if (backward) {
// If we're going backward we need to insert everything the other
// way around
handle = graph->flip(handle);
}
// Work out where we are putting it. We should insert left to right when
// going forward, and right to left when going backward.
auto inserted_iterator = inserted.begin() + + (backward ? haplotype.size() - 1 - i : i);
// Save the handle
inserted_iterator->first = handle;
// Find the appropriate node lanes collection
auto& node_lanes = net_node_lanes[graph->forward(handle)];
if (inserted_iterator == inserted.begin() || inserted_iterator + 1 == inserted.end()) {
// Start and end visits get placed at the predetermined overall_lane
inserted_iterator->second = overall_lane;
// Insert at the correct offset
auto lane_iterator = node_lanes.emplace(node_lanes.begin() + overall_lane, inserted_iterator);
// Look at whatever is after the lane we just inserted
++lane_iterator;
while (lane_iterator != node_lanes.end()) {
// Update all the subsequent records in that net node's lane list and bump up their internal lane assignments
// First dereference to get the iterator that points to the actual
// record, then dereference that, and increment the lane number.
(*(*lane_iterator)).second++;
++lane_iterator;
}
} else {
// Interior visits just get appended, which is simplest. No need to bump anything up.
// Save the local lane assignment
inserted_iterator->second = node_lanes.size();
// And do the insert
node_lanes.emplace_back(inserted_iterator);
}
// Insert the next handle in the next slot in the haplotype
++inserted_iterator;
}
// Return the annotated haplotype.
return inserted;
}
vector<pair<handle_t, size_t>> SnarlState::erase(size_t overall_lane) {
// Copy what we're erasing
auto copy = haplotypes.at(overall_lane);
for (auto it = copy.rbegin(); it != copy.rend(); ++it) {
// Trace from end to start and remove from the net node lanes collections.
// We have to do it backward so we can handle duplicate visits properly.
auto& node_lanes = net_node_lanes[graph->forward(it->first)];
auto lane_iterator = node_lanes.erase(node_lanes.begin() + it->second);
while (lane_iterator != node_lanes.end()) {
// Update all the subsequent records in that net node's lane list and bump down their internal lane assignments
// First dereference to get the iterator that points to the actual
// record, then dereference that, and decrement the lane number.
(*(*lane_iterator)).second--;
++lane_iterator;
}
}
// Drop the actual haplotype
haplotypes.erase(haplotypes.begin() + overall_lane);
// Return the copy
return copy;
}
void SnarlState::swap(size_t lane1, size_t lane2) {
// Swap the start and end annotation values
std::swap(haplotypes.at(lane1).front().second, haplotypes.at(lane2).front().second);
std::swap(haplotypes.at(lane1).back().second, haplotypes.at(lane2).back().second);
// Swap the start net node index entries
auto& start_node_lanes = net_node_lanes[graph->forward(graph->get_start())];
std::swap(start_node_lanes.at(lane1), start_node_lanes.at(lane2));
// Swap the end net node index entries
auto& end_node_lanes = net_node_lanes[graph->forward(graph->get_end())];
std::swap(end_node_lanes.at(lane1), end_node_lanes.at(lane2));
// Swap the actual haplotype vectors
std::swap(haplotypes.at(lane1), haplotypes.at(lane2));
}
GenomeStateCommand* InsertHaplotypeCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new DeleteHaplotypeCommand(state.insert_haplotype(*this));
}
GenomeStateCommand* DeleteHaplotypeCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new InsertHaplotypeCommand(state.delete_haplotype(*this));
}
GenomeStateCommand* SwapHaplotypesCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new SwapHaplotypesCommand(state.swap_haplotypes(*this));
}
GenomeStateCommand* AppendHaplotypeCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new DeleteHaplotypeCommand(state.append_haplotype(*this));
}
GenomeStateCommand* ReplaceSnarlHaplotypeCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new ReplaceLocalHaplotypeCommand(state.replace_snarl_haplotype(*this));
}
GenomeStateCommand* ReplaceLocalHaplotypeCommand::execute(GenomeState& state) const {
// Allocate and populate the reverse command.
return new ReplaceLocalHaplotypeCommand(state.replace_local_haplotype(*this));
}
GenomeState::GenomeState(const SnarlManager& manager, const HandleGraph* graph,
const unordered_set<pair<const Snarl*, const Snarl*>> telomeres) : telomeres(telomeres),
backing_graph(graph), manager(manager) {
manager.for_each_snarl_preorder([&](const Snarl* snarl) {
// For each snarl
// Make a net graph for it. TODO: we're not considering internal
// connectivity, but what we really should do is consider internal
// connectivity but only allowing for start to end traversals (but
// including in unary snarls)
net_graphs.emplace(snarl, manager.net_graph_of(snarl, graph, false));
// Make an empty state for it using the net graph
state.emplace(snarl, SnarlState(&net_graphs.at(snarl)));
// TODO: can we just make the net graph live in the state?
});
}
const NetGraph* GenomeState::get_net_graph(const Snarl* snarl) {
return &net_graphs.at(snarl);
}
DeleteHaplotypeCommand GenomeState::append_haplotype(const AppendHaplotypeCommand& c) {
// We'll populate this with all the stuff we added
DeleteHaplotypeCommand to_return;
// Do a stack-based walk of the specified haplotype and thread it in in the
// final overall lane.
insert_handles(c.haplotype, to_return.deletions);
// Reverse all the deletion vectors to delete in reverse insertion order
for (auto& kv : to_return.deletions) {
reverse(kv.second.begin(), kv.second.end());
}
return to_return;
}
ReplaceLocalHaplotypeCommand GenomeState::replace_local_haplotype(const ReplaceLocalHaplotypeCommand& c) {
ReplaceLocalHaplotypeCommand to_return;
// We need to do all the deletions and create balancing insertions
// TODO: this code is duplicated with delete_haplotype
for (auto& kv : c.deletions) {
// We can handle each snarl independently.
// TODO: do this in parallel?
auto& snarl = kv.first;
auto& overall_lanes = kv.second;
// Find where to log the deletions we need to do
auto& haplotype_insertions = to_return.insertions[snarl];
for (auto& overall_lane : overall_lanes) {
// For each haplotype we want to remove from this snarl, in order...
#ifdef debug
cerr << "Delete " << overall_lane << " from " << kv.first->start() << " -> " << kv.first->end() << endl;
#endif
// Remove the haplotype and save a copy
auto removed = state.at(snarl).erase(overall_lane);
// Save the insertion to do by logging the haplotype with all its
// tagged lane assignments.
haplotype_insertions.emplace_back(removed);
}
// Flip the insertions around to happen in reverse order. Things need to
// get to the lanes we deleted them from.
reverse(haplotype_insertions.begin(), haplotype_insertions.end());
}
// Then we need to do all the insertions and create balancing deletions
// TODO: this is duplicated with insert_haplotype
for (auto& kv : c.insertions) {
// We can handle each snarl independently.
// TODO: do this in parallel?
auto& snarl = kv.first;
auto& haplotypes = kv.second;
// Find where to log the deletions we need to do
auto& haplotype_deletions = to_return.deletions[snarl];
for (auto& haplotype : haplotypes) {
// For each haplotype we want to add to this snarl, in order...
// Insert the haplotype
state.at(snarl).insert(haplotype);
// Save the deletion to do by logging the overall lane used.
haplotype_deletions.emplace_back(haplotype.front().second);
}
// Flip the deletions around to happen in reverse order. Things may not
// stay in the lane we put them in when we add later things.
reverse(haplotype_deletions.begin(), haplotype_deletions.end());
}
return to_return;
}
DeleteHaplotypeCommand GenomeState::insert_haplotype(const InsertHaplotypeCommand& c) {
DeleteHaplotypeCommand to_return;
for (auto& kv : c.insertions) {
// We can handle each snarl independently.
// TODO: do this in parallel?
auto& snarl = kv.first;
auto& haplotypes = kv.second;
// Find where to log the deletions we need to do
auto& haplotype_deletions = to_return.deletions[snarl];
for (auto& haplotype : haplotypes) {
// For each haplotype we want to add to this snarl, in order...
// Insert the haplotype
state.at(snarl).insert(haplotype);
// Save the deletion to do by logging the overall lane used.
haplotype_deletions.emplace_back(haplotype.front().second);
}
// Flip the deletions around to happen in reverse order. Things may not
// stay in the lane we put them in when we add later things.
reverse(haplotype_deletions.begin(), haplotype_deletions.end());
}
return to_return;
}
InsertHaplotypeCommand GenomeState::delete_haplotype(const DeleteHaplotypeCommand& c) {
InsertHaplotypeCommand to_return;
for (auto& kv : c.deletions) {
// We can handle each snarl independently.
// TODO: do this in parallel?
auto& snarl = kv.first;
auto& overall_lanes = kv.second;
// Find where to log the deletions we need to do
auto& haplotype_insertions = to_return.insertions[snarl];
for (auto& overall_lane : overall_lanes) {
// For each haplotype we want to remove from this snarl, in order...
#ifdef debug
cerr << "Delete " << overall_lane << " from " << kv.first->start() << " -> " << kv.first->end() << endl;
#endif
// Remove the haplotype and save a copy
auto removed = state.at(snarl).erase(overall_lane);
// Save the insertion to do by logging the haplotype with all its
// tagged lane assignments.
haplotype_insertions.emplace_back(removed);
}
// Flip the insertions around to happen in reverse order. Things need to
// get to the lanes we deleted them from.
reverse(haplotype_insertions.begin(), haplotype_insertions.end());
}
return to_return;
}
SwapHaplotypesCommand GenomeState::swap_haplotypes(const SwapHaplotypesCommand& c) {
// We have to walk the chromosome and swap in each top-level snarl.
// Make a visit to track where we are. We start at the start of the forward
// snarl.
Visit here = c.telomere_pair.first->start();
// Work out what snarl comes next
const Snarl* next = manager.into_which_snarl(here);
while (next != nullptr) {
// Until we run out of snarls
// Work out if we go backward or forward through this one
bool backward = (here.node_id() != next->start().node_id());
// Swap the lanes in this snarl
state.at(next).swap(c.to_swap.first, c.to_swap.second);
if (next == c.telomere_pair.second) {
// We just did the last snarl on the chromosome so stop. Don't go
// around circular things forever.
break;
}
// Now look at the visit out of the snarl we just did
here = backward ? reverse(next->start()) : next->end();
// See if that puts us in another snarl
next = manager.into_which_snarl(here);
}
// This command is its own inverse
return c;
}
ReplaceLocalHaplotypeCommand GenomeState::replace_snarl_haplotype(const ReplaceSnarlHaplotypeCommand& c) {
ReplaceLocalHaplotypeCommand to_return;
// First recursively delete everything that was in that lane.
// We use this map of lanes to delete. We use sets to make sure we delete lanes from high to low.
unordered_map<const Snarl*, set<size_t>> lanes_to_delete{make_pair(c.snarl, set<size_t>{c.lane})};
while (!lanes_to_delete.empty()) {
auto& snarl = lanes_to_delete.begin()->first;
auto& overall_lanes = lanes_to_delete.begin()->second;
// Find where to log the deletions we need to do
auto& haplotype_insertions = to_return.insertions[snarl];
for (auto it = overall_lanes.rbegin(); it != overall_lanes.rend(); ++it) {
// For each haplotype we want to remove from this snarl, in decreasign order by lane number...
auto& overall_lane = *it;
#ifdef debug
cerr << "Delete " << overall_lane << " from " << snarl->start() << " -> " << snarl->end() << endl;
#endif
// Remove the haplotype and save a copy
auto removed = state.at(snarl).erase(overall_lane);
for (auto& handle_and_lane : removed) {
if (net_graphs.at(snarl).is_child(handle_and_lane.first)) {
// If any of the handles is to a child chain/unary snarl, we
// need to remember to remove this lane from all its snarls.
// TODO: Should this get chain from net graph handle logic
// be factored out into a utility function somehow?
// Get the handle in the backing graph that reads into the child
// in the orientation we are visiting it
handle_t into = net_graphs.at(snarl).get_inward_backing_handle(handle_and_lane.first);
// Get the child we are actually reading into from the SnarlManager
const Snarl* child = manager.into_which_snarl(to_visit(*backing_graph, into));
// Get the chain for the child
const Chain* child_chain = manager.chain_of(child);
for (auto it = chain_begin(*child_chain); it != chain_end(*child_chain); ++it) {
// For each snarl in the chain, remember to delete this overall lane
lanes_to_delete[it->first].insert(handle_and_lane.second);
}
}
}
// Save the insertion to do by logging the haplotype with all its
// tagged lane assignments.
haplotype_insertions.emplace_back(removed);
}
// Flip the insertions around to happen in reverse order. Things need to
// get to the lanes we deleted them from.
reverse(haplotype_insertions.begin(), haplotype_insertions.end());
// We finished this snarl. Handle another snarl.
lanes_to_delete.erase(snarl);
}
// Then trace along the new haplotype bit stack-wise like we do for an
// append. Make sure it ends up in the right lane that we just deleted.
insert_handles(c.haplotype, to_return.deletions, c.lane);
// Reverse all the deletion vectors to delete in reverse insertion order
for (auto& kv : to_return.deletions) {
reverse(kv.second.begin(), kv.second.end());
}
return to_return;
}
GenomeStateCommand* GenomeState::execute(GenomeStateCommand* command) {
// Just make the command tell us what type it is
return command->execute(*this);
}
size_t GenomeState::count_haplotypes(const pair<const Snarl*, const Snarl*>& telomere_pair) const {
// We assume all the traversals go through the whole chromosome from telomere to telomere.
return state.at(telomere_pair.first).size();
}
size_t GenomeState::count_haplotypes(const Snarl* snarl) const {
return state.at(snarl).size();
}
void GenomeState::trace_haplotype(const pair<const Snarl*, const Snarl*>& telomere_pair,
size_t overall_lane, const function<void(const handle_t&)>& iteratee) const {
// We need to traverse this hierarchy while not emitting visits twice. The
// hard part is that the same handle represents entering a snarl and the
// start visit of that snarl. The other hard part is that for back-to-back
// snarls in a chain be need to not visit the shared node twice.
// So what we do is, we never emit the handle for entering a snarl and
// always make it be the frist handle from inside the snarl instead. Also,
// if we visit a child snarl immediately after we did a child snarl, we
// leave the first handle of the child snarl off because we just did it.
// We define a recursive function to traverse a snarl and all its visited children.
function<void(const Snarl*, size_t, bool, bool)> recursively_traverse_snarl =
[&](const Snarl* here, size_t lane, bool orientation, bool skip_first) {
// Here's the NetGraph we are working on
auto& net_graph = net_graphs.at(here);
#ifdef debug
cerr << "Tracing snarl " << here->start() << " -> " << here->end() << " lane " << lane
<< " in orientation " << orientation << " and skip first flag " << skip_first << endl;
#endif
// Go through its traversal
state.at(here).trace(lane, orientation, [&](const handle_t& visit, const size_t child_lane) {
#ifdef debug
cerr << "Snarl " << here->start() << " -> " << here->end() << " has visit "
<< net_graph.get_id(visit) << " " << net_graph.get_is_reverse(visit) << endl;
#endif
if (skip_first) {
// We aren't supposed to do this visit; it's already been done
// by the previous snarl in our chain.
skip_first = false;
return;
}
if (net_graph.is_child(visit)) {
// If the visit enters a real child chain, we have to do that
// child chain all the snarls in it.
// Get the handle in the backing graph that reads into the chain
// in the orientation we are visiting it
handle_t into = net_graph.get_inward_backing_handle(visit);
#ifdef debug
cerr << "\tInward backing handle is " << backing_graph->get_id(into) << " "
<< backing_graph->get_is_reverse(into) << endl;
#endif
// Get the snarl we really are entering, because get_inward_backing_handle works.
const Snarl* entered = manager.into_which_snarl(to_visit(*backing_graph, into));
// Decide if we are entering it through its end
bool entered_snarl_via_end = entered->start().node_id() != backing_graph->get_id(into);
// Get the chain that is our child
const Chain* child_chain = manager.chain_of(entered);
// Get this snarl's orientation in that chain
bool entered_orientation_in_chain = manager.chain_orientation_of(entered);
// If we enter a snarl via its start, and it is forward in the chain, we do the whole chain forward.
// If we enter a snarl via its end, and it is forward in its chain, we do the whole chain reverse.
// If we enter a snarl via its start, and it is backward in its chain, we do the whole chain reverse.
// If we enter a snarl via its end, and it is backward in its chain, we do the whole chain forward.
// F F F
// T F T
// F T T
// T T F
// So we use xor here.
bool chain_orientation = entered_snarl_via_end != entered_orientation_in_chain;
#ifdef debug
cerr << "\tEnters into chain containing " << entered->start() << " -> " << entered->end()
<< " which we enter in orientation " << entered_snarl_via_end
<< " and is in orientation " << entered_orientation_in_chain << " in its chain" << endl;
cerr << "\tOverall, chain should be traversed in orientation " << chain_orientation << endl;
#endif
// Get the iterators to loop over the chain in the orientation we have reached it
auto it = chain_orientation ? chain_rcbegin(*child_chain) : chain_begin(*child_chain);
auto end = chain_orientation ? chain_rcend(*child_chain) : chain_end(*child_chain);
// Track if we had a previous snarl that would have emitted any shared nodes.
bool had_previous = false;
// Make sure we have the end of the chain we were expecting.
assert(it->first == entered);
for (; it != end; ++it) {
// Until we run out of snarls in the chain
#ifdef debug
cerr << "\t\tHandle " << it->first->start() << " -> " << it->first->end()
<< " orientation " << it->second << " in chain" << endl;
#endif
// Handle this one
recursively_traverse_snarl(it->first, child_lane, it->second, had_previous);
// Say we did a snarl previously
had_previous = true;
}
} else {
// This is a visit to a normal handle in this snarl.
// Emit it
iteratee(visit);
}
});
};
// Now we need to walk between the telomeres we were given. It's not quite a
// chain because the telomeres may be unary snarls.
// Make a visit to track where we are. We start at the start of the forward
// snarl.
Visit here = telomere_pair.first->start();
// Work out what snarl comes next
const Snarl* next = manager.into_which_snarl(here);
// Track if we had a previous snarl that would have emitted any shared nodes.
bool had_previous = false;
while (next != nullptr) {
// Until we run out of snarls
// Work out if we go backward or forward through this one
bool backward = (here.node_id() != next->start().node_id());
#ifdef debug
cerr << "Traverse top level snarl " << pb2json(*next) << " lane " << overall_lane
<< " in orientation " << backward << " and skip first flag " << had_previous << endl;
#endif
// Handle it
recursively_traverse_snarl(next, overall_lane, backward, had_previous);
// Say we did a snarl previously
had_previous = true;
if (next == telomere_pair.second) {
// We just did the last snarl on the chromosome so stop. Don't go
// around circular things forever.
break;
}
// Now look at the visit out of the snarl we just did
here = backward ? reverse(next->start()) : next->end();
// See if that puts us in another snarl
next = manager.into_which_snarl(here);
}
}
void GenomeState::dump() const {
for (auto& kv : state) {
cerr << "State of " << kv.first->start() << " -> " << kv.first->end() << ":" << endl;
kv.second.dump();
}
}
void GenomeState::insert_handles(const vector<handle_t>& to_add,
unordered_map<const Snarl*, vector<size_t>>& lanes_added, size_t top_lane) {
// We can't add an empty haplotype.
assert(!to_add.empty());
// This holds a stack of all the snarls we are in at a given point in the
// haplotype we are adding, and the handles we are putting for the
// traversals of them that we are building. Lane assignments are not
// necessary since they will always be last.
list<pair<const Snarl*, vector<handle_t>>> stack;
// We know we're at the start of a telomere snarl, so we can just jump right
// into the main loop...
for (auto& next_handle : to_add) {
// For each handle, look at it as a visit in the base graph
Visit next_visit = to_visit(*backing_graph, next_handle);
#ifdef debug
cerr << "Stack: ";
for (auto& frame : stack) {
cerr << frame.first->start() << " -> " << frame.first->end() << ", ";
}
cerr << endl;
cerr << "Encountered visit: " << next_visit << endl;
#endif
// Are we going in and out of snarls?
auto last_snarl = manager.into_which_snarl(reverse(next_visit));
auto next_snarl = manager.into_which_snarl(next_visit);
if (last_snarl != nullptr) {
// If we're leaving a child snarl
#ifdef debug
cerr << "Leaving snarl " << last_snarl->start() << " -> " << last_snarl->end() << endl;
#endif
// Make sure it's the one we have been working on
assert(!stack.empty());
assert(stack.front().first == last_snarl);
// Make sure the exit handle is in the haplotype
stack.front().second.push_back(next_handle);
// What state do we have to work on?
auto& snarl_state = state.at(last_snarl);
// Did we go backward or forward through this child snarl? This only
// matters to make sure we get the lane assignments right for its
// repeated children. We keep going forward through the haplotype
// either way.
bool backward = next_visit != last_snarl->end();
// Add in its haplotype, and get the resulting lane assignments.
// Make sure to insert at the right lane if we are the last thing on
// the stack (i.e. the top level snarl) and have a particular lane.
auto& embedded = (stack.size() == 1 && top_lane != numeric_limits<size_t>::max()) ?
snarl_state.insert(top_lane, stack.front().second, backward) :
snarl_state.append(stack.front().second, backward);
// Remember to delete the overall lane from this snarl
assert(!embedded.empty());
lanes_added[last_snarl].push_back(embedded.front().second);
// Pop from the stack
stack.pop_front();
// What chain are we in?
auto chain = manager.chain_of(last_snarl);
if ((next_visit == get_end_of(*chain) || next_visit == reverse(get_start_of(*chain))) && !stack.empty()) {
// If we exited a chain, record a traversal of the whole chain in
// the parent snarl's haplotype under construction.
#ifdef debug
cerr << "Snarl was last in its chain of " << chain->size() << endl;
#endif
// Get the parent snarl
const Snarl* parent = stack.front().first;
// And its net graph
auto& net_graph = net_graphs.at(parent);
// Get the backing graph handle reading out of the chain
handle_t backing_outward = backing_graph->get_handle(next_visit.node_id(), next_visit.backward());
// Make it inward
handle_t backing_inward = backing_graph->flip(backing_outward);
// Get a handle_t representing the whole chain.
// We get the representative chain handle for the inward backing handle, and flip it back.
handle_t chain_handle = net_graph.flip(net_graph.get_handle_from_inward_backing_handle(backing_inward));
#ifdef debug
cerr << "Represent chain traversal with " << to_visit(net_graph, chain_handle) << endl;
#endif
// Tack it on to the parent
stack.front().second.push_back(chain_handle);
} else {
#ifdef debug
cerr << "Visit " << next_visit << " was in chain of " << chain->size()
<< " with " << reverse(get_start_of(*chain)) << " out start and "
<< get_end_of(*chain) << " out end and " << stack.size() << " on stack" << endl;
#endif
}
} else if (next_snarl == nullptr && !stack.empty()) {
// Otherwise, we're an ordinary visit in the snarl we're in. So make
// sure we're in a snarl (i.e. not the first handle in the whole
// haplotype).
#ifdef debug
cerr << "In snarl " << stack.front().first->start() << " -> " << stack.front().first->end() << endl;
#endif
// Add this handle in the backing graph, which is going to be used
// to represent a visit to an ordinary node, to the top haplotype on
// the stack.
stack.front().second.push_back(next_handle);
}
if (next_snarl != nullptr) {
// When we come to a child snarl, descend into a new stack frame.
// TODO: relies on the backing graph handles being the end handles
// in the snarl's net graph.
// Note that we may enter a snarl we don't finish if we aren't
// inserting across all the snarls in a chain.
#ifdef debug
cerr << "Entering snarl " << next_snarl->start() << " -> " << next_snarl->end() << endl;
#endif
stack.emplace_front(next_snarl, vector<handle_t>{next_handle});
}
}
}
}
|