1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/**
* \file multipath_alignment_emitter.cpp
*
* Implements a system for emitting multipath alignments and groups of multipath alignments in multiple formats.
*/
#include "multipath_alignment_emitter.hpp"
#include "vg/io/json2pb.h"
using namespace vg::io;
namespace vg {
using namespace std;
MultipathAlignmentEmitter::MultipathAlignmentEmitter(const string& filename, size_t num_threads, const string out_format,
const PathPositionHandleGraph* graph, const vector<pair<string, int64_t>>* path_order_and_length) :
HTSWriter(filename,
out_format == "SAM" || out_format == "BAM" || out_format == "CRAM" ? out_format : "SAM", // just so the assert passes
path_order_and_length ? *path_order_and_length : vector<pair<string, int64_t>>(),
num_threads),
graph(graph)
{
// init the emitters for the correct output type
if (out_format == "GAM" ) {
format = GAM;
aln_emitters.reserve(num_threads);
for (int i = 0; i < num_threads; ++i) {
aln_emitters.emplace_back(new vg::io::ProtobufEmitter<Alignment>(multiplexer.get_thread_stream(i)));
}
}
else if (out_format == "GAMP") {
format = GAMP;
mp_aln_emitters.reserve(num_threads);
for (int i = 0; i < num_threads; ++i) {
mp_aln_emitters.emplace_back(new vg::io::ProtobufEmitter<MultipathAlignment>(multiplexer.get_thread_stream(i)));
}
}
else if (out_format == "GAF") {
format = GAF;
if (graph == nullptr) {
cerr << "error:[MultipathAlignmentEmitter] GAF format output requires a graph" << endl;
exit(1);
}
}
else if (out_format == "SAM" || out_format == "BAM" || out_format == "CRAM") {
if (out_format == "SAM") {
format = SAM;
}
else if (out_format == "BAM") {
format = BAM;
}
else {
format = CRAM;
}
// TODO: check for graph, in case of spliced alignments?
}
else {
cerr << "error:[MultipathAlignmentEmitter] unrecognized output format " << out_format << endl;
exit(1);
}
}
MultipathAlignmentEmitter::~MultipathAlignmentEmitter() {
for (auto& emitter : aln_emitters) {
// Flush each ProtobufEmitter
emitter->flush();
// Make it go away before the stream
emitter.reset();
}
for (auto& emitter : mp_aln_emitters) {
// Flush each ProtobufEmitter
emitter->flush();
// Make it go away before the stream
emitter.reset();
}
}
void MultipathAlignmentEmitter::set_read_group(const string& read_group) {
this->read_group = read_group;
}
void MultipathAlignmentEmitter::set_sample_name(const string& sample_name) {
this->sample_name = sample_name;
}
void MultipathAlignmentEmitter::set_min_splice_length(int64_t min_splice_length) {
this->min_splice_length = min_splice_length;
}
void MultipathAlignmentEmitter::emit_pairs(const string& name_1, const string& name_2,
vector<pair<multipath_alignment_t, multipath_alignment_t>>&& mp_aln_pairs,
vector<pair<tuple<string, bool, int64_t>, tuple<string, bool, int64_t>>>* path_positions,
vector<int64_t>* tlen_limits) {
int thread_number = omp_get_thread_num();
switch (format) {
case GAMP:
{
vector<MultipathAlignment> mp_alns_out(2 * mp_aln_pairs.size());
for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
MultipathAlignment& mp_aln_out_1 = mp_alns_out[2 * i];
MultipathAlignment& mp_aln_out_2 = mp_alns_out[2 * i + 1];
to_proto_multipath_alignment(mp_aln_pairs[i].first, mp_aln_out_1);
to_proto_multipath_alignment(mp_aln_pairs[i].second, mp_aln_out_2);
mp_aln_out_1.set_name(name_1);
mp_aln_out_2.set_name(name_2);
mp_aln_out_1.set_paired_read_name(name_2);
mp_aln_out_2.set_paired_read_name(name_1);
if (!sample_name.empty()) {
mp_aln_out_1.set_sample_name(sample_name);
mp_aln_out_2.set_sample_name(sample_name);
}
if (!read_group.empty()) {
mp_aln_out_1.set_read_group(read_group);
mp_aln_out_2.set_read_group(read_group);
}
}
mp_aln_emitters[thread_number]->write_many(std::move(mp_alns_out));
if (multiplexer.want_breakpoint(thread_number)) {
// The multiplexer wants our data.
// Flush and create a breakpoint.
mp_aln_emitters[thread_number]->flush();
multiplexer.register_breakpoint(thread_number);
}
break;
}
case GAM:
case GAF:
{
vector<Alignment> alns_out(2 * mp_aln_pairs.size());
for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
Alignment& aln_out_1 = alns_out[2 * i];
Alignment& aln_out_2 = alns_out[2 * i + 1];
convert_to_alignment(mp_aln_pairs[i].first, aln_out_1,
nullptr,
&name_2);
convert_to_alignment(mp_aln_pairs[i].second, aln_out_2,
&name_1,
nullptr);
aln_out_1.set_name(name_1);
aln_out_2.set_name(name_2);
if (!sample_name.empty()) {
aln_out_1.set_sample_name(sample_name);
aln_out_2.set_sample_name(sample_name);
}
if (!read_group.empty()) {
aln_out_1.set_read_group(read_group);
aln_out_2.set_read_group(read_group);
}
}
if (format == GAM) {
aln_emitters[thread_number]->write_many(std::move(alns_out));
if (multiplexer.want_breakpoint(thread_number)) {
// The multiplexer wants our data.
// Flush and create a breakpoint.
aln_emitters[thread_number]->flush();
}
}
else {
for (auto& aln : alns_out) {
multiplexer.get_thread_stream(thread_number) << alignment_to_gaf(*graph, aln) << endl;
}
}
multiplexer.register_breakpoint(thread_number);
break;
}
case SAM:
case BAM:
case CRAM:
{
size_t thread_number = omp_get_thread_num();
bam_hdr_t* header = ensure_header(read_group, sample_name, thread_number);
vector<bam1_t*> records;
records.reserve(2 * mp_aln_pairs.size());
for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
string ref_name_1, ref_name_2;
bool ref_rev_1, ref_rev_2;
int64_t ref_pos_1, ref_pos_2;
tie(ref_name_1, ref_rev_1, ref_pos_1) = path_positions->at(i).first;
tie(ref_name_2, ref_rev_2, ref_pos_2) = path_positions->at(i).second;
int64_t tlen_limit = 0;
if (tlen_limits) {
tlen_limit = tlen_limits->at(i);
}
convert_to_hts_paired(name_1, name_2, mp_aln_pairs[i].first, mp_aln_pairs[i].second,
ref_name_1, ref_rev_1, ref_pos_1, ref_name_2, ref_rev_2, ref_pos_2,
tlen_limit, header, records);
}
save_records(header, records, thread_number);
break;
}
default:
cerr << "error:[MultipathAlignmentEmitter] unrecognized output format" << endl;
break;
}
}
void MultipathAlignmentEmitter::emit_singles(const string& name, vector<multipath_alignment_t>&& mp_alns,
vector<tuple<string, bool, int64_t>>* path_positions) {
int thread_number = omp_get_thread_num();
switch (format) {
case GAMP:
{
vector<MultipathAlignment> mp_alns_out(mp_alns.size());
for (size_t i = 0; i < mp_alns.size(); ++i) {
MultipathAlignment& mp_aln_out = mp_alns_out[i];
to_proto_multipath_alignment(mp_alns[i], mp_aln_out);
mp_aln_out.set_name(name);
if (!sample_name.empty()) {
mp_aln_out.set_sample_name(sample_name);
}
if (!read_group.empty()) {
mp_aln_out.set_read_group(read_group);
}
}
mp_aln_emitters[thread_number]->write_many(std::move(mp_alns_out));
if (multiplexer.want_breakpoint(thread_number)) {
// The multiplexer wants our data.
// Flush and create a breakpoint.
mp_aln_emitters[thread_number]->flush();
multiplexer.register_breakpoint(thread_number);
}
break;
}
case GAM:
case GAF:
{
vector<Alignment> alns_out(mp_alns.size());
for (size_t i = 0; i < mp_alns.size(); ++i) {
Alignment& aln_out = alns_out[i];
convert_to_alignment(mp_alns[i], aln_out);
aln_out.set_name(name);
if (!sample_name.empty()) {
aln_out.set_sample_name(sample_name);
}
if (!read_group.empty()) {
aln_out.set_read_group(read_group);
}
}
if (format == GAM) {
aln_emitters[thread_number]->write_many(std::move(alns_out));
if (multiplexer.want_breakpoint(thread_number)) {
// The multiplexer wants our data.
// Flush and create a breakpoint.
aln_emitters[thread_number]->flush();
}
}
else {
for (auto& aln : alns_out) {
multiplexer.get_thread_stream(thread_number) << alignment_to_gaf(*graph, aln) << endl;
}
}
break;
}
case SAM:
case BAM:
case CRAM:
{
size_t thread_number = omp_get_thread_num();
bam_hdr_t* header = ensure_header(read_group, sample_name, thread_number);
vector<bam1_t*> records;
records.reserve(mp_alns.size());
for (size_t i = 0; i < mp_alns.size(); ++i) {
string ref_name;
bool ref_rev;
int64_t ref_pos;
tie(ref_name, ref_rev, ref_pos) = path_positions->at(i);
convert_to_hts_unpaired(name, mp_alns[i], ref_name, ref_rev, ref_pos, header, records);
}
save_records(header, records, thread_number);
break;
}
default:
cerr << "error:[MultipathAlignmentEmitter] unrecognized output format" << endl;
break;
}
}
void MultipathAlignmentEmitter::convert_to_alignment(const multipath_alignment_t& mp_aln, Alignment& aln,
const string* prev_name,
const string* next_name) const {
optimal_alignment(mp_aln, aln);
if (prev_name) {
aln.mutable_fragment_prev()->set_name(*prev_name);
}
if (next_name) {
aln.mutable_fragment_next()->set_name(*next_name);
}
// at one point vg call needed these, maybe it doesn't anymore though
aln.set_identity(identity(aln.path()));
}
void MultipathAlignmentEmitter::create_alignment_shim(const string& name, const multipath_alignment_t& mp_aln,
Alignment& shim, const string* prev_name, const string* next_name) const {
shim.set_sequence(mp_aln.sequence());
shim.set_quality(mp_aln.quality());
shim.set_name(name);
if (prev_name) {
shim.mutable_fragment_prev()->set_name(*prev_name);
}
if (next_name) {
shim.mutable_fragment_next()->set_name(*next_name);
}
if (!read_group.empty()) {
shim.set_read_group(read_group);
}
if (!sample_name.empty()) {
shim.set_read_group(sample_name);
}
shim.set_mapping_quality(mp_aln.mapping_quality());
// do we have at least 1 mapping?
bool mapped = false;
for (size_t i = 0; i < mp_aln.subpath_size() && !mapped; ++i) {
const auto& path = mp_aln.subpath(i).path();
for (size_t j = 0; j < path.mapping_size() && !mapped; ++j) {
mapped = true;
}
}
// hacky way to inform the conversion code that the read is mapped
if (mapped) {
shim.mutable_path()->add_mapping();
}
}
void MultipathAlignmentEmitter::convert_to_hts_unpaired(const string& name, const multipath_alignment_t& mp_aln,
const string& ref_name, bool ref_rev, int64_t ref_pos,
bam_hdr_t* header, vector<bam1_t*>& dest) const {
auto cigar = cigar_against_path(mp_aln, ref_name, ref_rev, ref_pos, *graph, min_splice_length);
Alignment shim;
create_alignment_shim(name, mp_aln, shim);
dest.push_back(alignment_to_bam(header, shim, ref_name, ref_pos, ref_rev, cigar));
}
void MultipathAlignmentEmitter::convert_to_hts_paired(const string& name_1, const string& name_2,
const multipath_alignment_t& mp_aln_1,
const multipath_alignment_t& mp_aln_2,
const string& ref_name_1, bool ref_rev_1, int64_t ref_pos_1,
const string& ref_name_2, bool ref_rev_2, int64_t ref_pos_2,
int64_t tlen_limit, bam_hdr_t* header, vector<bam1_t*>& dest) const {
auto cigar_1 = cigar_against_path(mp_aln_1, ref_name_1, ref_rev_1, ref_pos_1, *graph, min_splice_length);
auto cigar_2 = cigar_against_path(mp_aln_2, ref_name_2, ref_rev_2, ref_pos_2, *graph, min_splice_length);
Alignment shim_1, shim_2;
create_alignment_shim(name_1, mp_aln_1, shim_1, nullptr, &name_2);
create_alignment_shim(name_2, mp_aln_2, shim_2, &name_1, nullptr);
auto tlens = compute_template_lengths(ref_pos_1, cigar_1, ref_pos_2, cigar_2);
dest.push_back(alignment_to_bam(header, shim_1, ref_name_1, ref_pos_1, ref_rev_1, cigar_1,
ref_name_2, ref_pos_2, ref_rev_2, tlens.first, tlen_limit));
dest.push_back(alignment_to_bam(header, shim_2, ref_name_2, ref_pos_2, ref_rev_2, cigar_2,
ref_name_1, ref_pos_1, ref_rev_1, tlens.second, tlen_limit));
}
}
|