File: multipath_alignment_emitter.cpp

package info (click to toggle)
vg 1.30.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 267,848 kB
  • sloc: cpp: 446,974; ansic: 116,148; python: 22,805; cs: 17,888; javascript: 11,031; sh: 5,866; makefile: 4,039; java: 1,415; perl: 1,303; xml: 442; lisp: 242
file content (375 lines) | stat: -rw-r--r-- 15,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/**
 * \file multipath_alignment_emitter.cpp
 *
 * Implements a system for emitting multipath alignments and groups of multipath alignments in multiple formats.
 */

#include "multipath_alignment_emitter.hpp"
#include "vg/io/json2pb.h"

using namespace vg::io;

namespace vg {
using namespace std;

MultipathAlignmentEmitter::MultipathAlignmentEmitter(const string& filename, size_t num_threads, const string out_format,
                                                     const PathPositionHandleGraph* graph, const vector<pair<string, int64_t>>* path_order_and_length) :
    HTSWriter(filename,
              out_format == "SAM" || out_format == "BAM" || out_format == "CRAM" ? out_format : "SAM", // just so the assert passes
              path_order_and_length ? *path_order_and_length : vector<pair<string, int64_t>>(),
              num_threads),
    graph(graph)
{

    // init the emitters for the correct output type
    if (out_format == "GAM" ) {
        format = GAM;
        aln_emitters.reserve(num_threads);
        for (int i = 0; i < num_threads; ++i) {
            aln_emitters.emplace_back(new vg::io::ProtobufEmitter<Alignment>(multiplexer.get_thread_stream(i)));
        }
    }
    else if (out_format == "GAMP") {
        format = GAMP;
        mp_aln_emitters.reserve(num_threads);
        for (int i = 0; i < num_threads; ++i) {
            mp_aln_emitters.emplace_back(new vg::io::ProtobufEmitter<MultipathAlignment>(multiplexer.get_thread_stream(i)));
        }
    }
    else if (out_format == "GAF") {
        format = GAF;
        if (graph == nullptr) {
            cerr << "error:[MultipathAlignmentEmitter] GAF format output requires a graph" << endl;
            exit(1);
        }
    }
    else if (out_format == "SAM" || out_format == "BAM" || out_format == "CRAM") {
        if (out_format == "SAM") {
            format = SAM;
        }
        else if (out_format == "BAM") {
            format = BAM;
        }
        else {
            format = CRAM;
        }
        // TODO: check for graph, in case of spliced alignments?
    }
    else {
        cerr << "error:[MultipathAlignmentEmitter] unrecognized output format " << out_format << endl;
        exit(1);
    }
}

MultipathAlignmentEmitter::~MultipathAlignmentEmitter() {
    for (auto& emitter : aln_emitters) {
        // Flush each ProtobufEmitter
        emitter->flush();
        // Make it go away before the stream
        emitter.reset();
    }
    for (auto& emitter : mp_aln_emitters) {
        // Flush each ProtobufEmitter
        emitter->flush();
        // Make it go away before the stream
        emitter.reset();
    }
}

void MultipathAlignmentEmitter::set_read_group(const string& read_group) {
    this->read_group = read_group;
}

void MultipathAlignmentEmitter::set_sample_name(const string& sample_name) {
    this->sample_name = sample_name;
}

void MultipathAlignmentEmitter::set_min_splice_length(int64_t min_splice_length) {
    this->min_splice_length = min_splice_length;
}

void MultipathAlignmentEmitter::emit_pairs(const string& name_1, const string& name_2,
                                           vector<pair<multipath_alignment_t, multipath_alignment_t>>&& mp_aln_pairs,
                                           vector<pair<tuple<string, bool, int64_t>, tuple<string, bool, int64_t>>>* path_positions,
                                           vector<int64_t>* tlen_limits) {
    
    int thread_number = omp_get_thread_num();
    switch (format) {
        case GAMP:
        {
            vector<MultipathAlignment> mp_alns_out(2 * mp_aln_pairs.size());
            for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
                MultipathAlignment& mp_aln_out_1 = mp_alns_out[2 * i];
                MultipathAlignment& mp_aln_out_2 = mp_alns_out[2 * i + 1];
                to_proto_multipath_alignment(mp_aln_pairs[i].first, mp_aln_out_1);
                to_proto_multipath_alignment(mp_aln_pairs[i].second, mp_aln_out_2);
                mp_aln_out_1.set_name(name_1);
                mp_aln_out_2.set_name(name_2);
                mp_aln_out_1.set_paired_read_name(name_2);
                mp_aln_out_2.set_paired_read_name(name_1);
                if (!sample_name.empty()) {
                    mp_aln_out_1.set_sample_name(sample_name);
                    mp_aln_out_2.set_sample_name(sample_name);
                }
                if (!read_group.empty()) {
                    mp_aln_out_1.set_read_group(read_group);
                    mp_aln_out_2.set_read_group(read_group);
                }
            }
            
            mp_aln_emitters[thread_number]->write_many(std::move(mp_alns_out));
            
            if (multiplexer.want_breakpoint(thread_number)) {
                // The multiplexer wants our data.
                // Flush and create a breakpoint.
                mp_aln_emitters[thread_number]->flush();
                multiplexer.register_breakpoint(thread_number);
            }
            break;
        }
        case GAM:
        case GAF:
        {
            vector<Alignment> alns_out(2 * mp_aln_pairs.size());
            for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
                Alignment& aln_out_1 = alns_out[2 * i];
                Alignment& aln_out_2 = alns_out[2 * i + 1];
                convert_to_alignment(mp_aln_pairs[i].first, aln_out_1,
                                     nullptr,
                                     &name_2);
                convert_to_alignment(mp_aln_pairs[i].second, aln_out_2,
                                     &name_1,
                                     nullptr);
                aln_out_1.set_name(name_1);
                aln_out_2.set_name(name_2);
                if (!sample_name.empty()) {
                    aln_out_1.set_sample_name(sample_name);
                    aln_out_2.set_sample_name(sample_name);
                }
                if (!read_group.empty()) {
                    aln_out_1.set_read_group(read_group);
                    aln_out_2.set_read_group(read_group);
                }
            }
            
            if (format == GAM) {
                aln_emitters[thread_number]->write_many(std::move(alns_out));
                
                if (multiplexer.want_breakpoint(thread_number)) {
                    // The multiplexer wants our data.
                    // Flush and create a breakpoint.
                    aln_emitters[thread_number]->flush();
                }
            }
            else {
                for (auto& aln : alns_out) {
                    multiplexer.get_thread_stream(thread_number) << alignment_to_gaf(*graph, aln) << endl;
                }
            }
            multiplexer.register_breakpoint(thread_number);
            break;
        }
        case SAM:
        case BAM:
        case CRAM:
        {
            size_t thread_number = omp_get_thread_num();
            bam_hdr_t* header = ensure_header(read_group, sample_name, thread_number);
            vector<bam1_t*> records;
            records.reserve(2 * mp_aln_pairs.size());
            
            for (size_t i = 0; i < mp_aln_pairs.size(); ++i) {
                string ref_name_1, ref_name_2;
                bool ref_rev_1, ref_rev_2;
                int64_t ref_pos_1, ref_pos_2;
                tie(ref_name_1, ref_rev_1, ref_pos_1) = path_positions->at(i).first;
                tie(ref_name_2, ref_rev_2, ref_pos_2) = path_positions->at(i).second;
                int64_t tlen_limit = 0;
                if (tlen_limits) {
                    tlen_limit = tlen_limits->at(i);
                }
                convert_to_hts_paired(name_1, name_2, mp_aln_pairs[i].first, mp_aln_pairs[i].second,
                                      ref_name_1, ref_rev_1, ref_pos_1, ref_name_2, ref_rev_2, ref_pos_2,
                                      tlen_limit, header, records);
            }
            
            save_records(header, records, thread_number);
            break;
        }
            
        default:
            cerr << "error:[MultipathAlignmentEmitter] unrecognized output format" << endl;
            break;
    }
}

void MultipathAlignmentEmitter::emit_singles(const string& name, vector<multipath_alignment_t>&& mp_alns,
                                             vector<tuple<string, bool, int64_t>>* path_positions) {
    
    int thread_number = omp_get_thread_num();
    
    switch (format) {
        case GAMP:
        {
            vector<MultipathAlignment> mp_alns_out(mp_alns.size());
            for (size_t i = 0; i < mp_alns.size(); ++i) {
                MultipathAlignment& mp_aln_out = mp_alns_out[i];
                to_proto_multipath_alignment(mp_alns[i], mp_aln_out);
                mp_aln_out.set_name(name);
                if (!sample_name.empty()) {
                    mp_aln_out.set_sample_name(sample_name);
                }
                if (!read_group.empty()) {
                    mp_aln_out.set_read_group(read_group);
                }
            }
            
            mp_aln_emitters[thread_number]->write_many(std::move(mp_alns_out));
            
            if (multiplexer.want_breakpoint(thread_number)) {
                // The multiplexer wants our data.
                // Flush and create a breakpoint.
                mp_aln_emitters[thread_number]->flush();
                multiplexer.register_breakpoint(thread_number);
            }
            break;
        }
        case GAM:
        case GAF:
        {
            vector<Alignment> alns_out(mp_alns.size());
            for (size_t i = 0; i < mp_alns.size(); ++i) {
                Alignment& aln_out = alns_out[i];
                convert_to_alignment(mp_alns[i], aln_out);
                aln_out.set_name(name);
                if (!sample_name.empty()) {
                    aln_out.set_sample_name(sample_name);
                }
                if (!read_group.empty()) {
                    aln_out.set_read_group(read_group);
                }
            }
            
            if (format == GAM) {
                aln_emitters[thread_number]->write_many(std::move(alns_out));
                
                if (multiplexer.want_breakpoint(thread_number)) {
                    // The multiplexer wants our data.
                    // Flush and create a breakpoint.
                    aln_emitters[thread_number]->flush();
                }
            }
            else {
                for (auto& aln : alns_out) {
                    multiplexer.get_thread_stream(thread_number) << alignment_to_gaf(*graph, aln) << endl;
                }
            }
            break;
        }
        case SAM:
        case BAM:
        case CRAM:
        {
            size_t thread_number = omp_get_thread_num();
            bam_hdr_t* header = ensure_header(read_group, sample_name, thread_number);
            vector<bam1_t*> records;
            records.reserve(mp_alns.size());
            
            for (size_t i = 0; i < mp_alns.size(); ++i) {
                string ref_name;
                bool ref_rev;
                int64_t ref_pos;
                tie(ref_name, ref_rev, ref_pos) = path_positions->at(i);
                convert_to_hts_unpaired(name, mp_alns[i], ref_name, ref_rev, ref_pos, header, records);
            }
            
            save_records(header, records, thread_number);
            break;
        }
            
        default:
            cerr << "error:[MultipathAlignmentEmitter] unrecognized output format" << endl;
            break;
    }
}

void MultipathAlignmentEmitter::convert_to_alignment(const multipath_alignment_t& mp_aln, Alignment& aln,
                                                     const string* prev_name,
                                                     const string* next_name) const {
    optimal_alignment(mp_aln, aln);
    if (prev_name) {
        aln.mutable_fragment_prev()->set_name(*prev_name);
    }
    if (next_name) {
        aln.mutable_fragment_next()->set_name(*next_name);
    }
    // at one point vg call needed these, maybe it doesn't anymore though
    aln.set_identity(identity(aln.path()));
}

void MultipathAlignmentEmitter::create_alignment_shim(const string& name, const multipath_alignment_t& mp_aln,
                                                      Alignment& shim, const string* prev_name, const string* next_name) const {
    
    shim.set_sequence(mp_aln.sequence());
    shim.set_quality(mp_aln.quality());
    shim.set_name(name);
    if (prev_name) {
        shim.mutable_fragment_prev()->set_name(*prev_name);
    }
    if (next_name) {
        shim.mutable_fragment_next()->set_name(*next_name);
    }
    if (!read_group.empty()) {
        shim.set_read_group(read_group);
    }
    if (!sample_name.empty()) {
        shim.set_read_group(sample_name);
    }
    shim.set_mapping_quality(mp_aln.mapping_quality());
    // do we have at least 1 mapping?
    bool mapped = false;
    for (size_t i = 0; i < mp_aln.subpath_size() && !mapped; ++i) {
        const auto& path = mp_aln.subpath(i).path();
        for (size_t j = 0; j < path.mapping_size() && !mapped; ++j) {
            mapped = true;
        }
    }
    // hacky way to inform the conversion code that the read is mapped
    if (mapped) {
        shim.mutable_path()->add_mapping();
    } 
}

void MultipathAlignmentEmitter::convert_to_hts_unpaired(const string& name, const multipath_alignment_t& mp_aln,
                                                        const string& ref_name, bool ref_rev, int64_t ref_pos,
                                                        bam_hdr_t* header, vector<bam1_t*>& dest) const {
    
    auto cigar = cigar_against_path(mp_aln, ref_name, ref_rev, ref_pos, *graph, min_splice_length);
    Alignment shim;
    create_alignment_shim(name, mp_aln, shim);
    dest.push_back(alignment_to_bam(header, shim, ref_name, ref_pos, ref_rev, cigar));
}

void MultipathAlignmentEmitter::convert_to_hts_paired(const string& name_1, const string& name_2,
                                                      const multipath_alignment_t& mp_aln_1,
                                                      const multipath_alignment_t& mp_aln_2,
                                                      const string& ref_name_1, bool ref_rev_1, int64_t ref_pos_1,
                                                      const string& ref_name_2, bool ref_rev_2, int64_t ref_pos_2,
                                                      int64_t tlen_limit, bam_hdr_t* header, vector<bam1_t*>& dest) const {
   
    auto cigar_1 = cigar_against_path(mp_aln_1, ref_name_1, ref_rev_1, ref_pos_1, *graph, min_splice_length);
    auto cigar_2 = cigar_against_path(mp_aln_2, ref_name_2, ref_rev_2, ref_pos_2, *graph, min_splice_length);
    
    Alignment shim_1, shim_2;
    create_alignment_shim(name_1, mp_aln_1, shim_1, nullptr, &name_2);
    create_alignment_shim(name_2, mp_aln_2, shim_2, &name_1, nullptr);
    
    auto tlens = compute_template_lengths(ref_pos_1, cigar_1, ref_pos_2, cigar_2);
    
    dest.push_back(alignment_to_bam(header, shim_1, ref_name_1, ref_pos_1, ref_rev_1, cigar_1,
                                    ref_name_2, ref_pos_2, ref_rev_2, tlens.first, tlen_limit));
    dest.push_back(alignment_to_bam(header, shim_2, ref_name_2, ref_pos_2, ref_rev_2, cigar_2,
                                    ref_name_1, ref_pos_1, ref_rev_1, tlens.second, tlen_limit));
}

}