1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/**
* \file statistics.cpp
*
* Contains implementations of statistical functions
*
*/
#include "statistics.hpp"
namespace vg {
double median(std::vector<int> &v) {
size_t n = v.size() / 2;
std::nth_element(v.begin(), v.begin()+n, v.end());
int vn = v[n];
if (v.size()%2 == 1) {
return vn;
} else {
std::nth_element(v.begin(), v.begin()+n-1, v.end());
return 0.5*(vn+v[n-1]);
}
}
// from Python exmaple here:
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
void wellford_update(size_t& count, double& mean, double& M2, double new_val) {
++count;
double delta = new_val - mean;
mean += delta / (double)count;
double delta2 = new_val - mean;
M2 += delta * delta2;
}
pair<double, double> wellford_mean_var(size_t count, double mean, double M2, bool sample_variance) {
if (count == 0 || (sample_variance && count == 1)) {
return make_pair(nan(""), nan(""));
} else {
return make_pair(mean, M2 / (double)(sample_variance ? count - 1 : count));
}
}
double phi(double x1, double x2) {
return (std::erf(x2/std::sqrt(2)) - std::erf(x1/std::sqrt(2)))/2;
}
// Modified from qnorm function in R source:
// https://svn.r-project.org/R/trunk/src/nmath/qnorm.c
double normal_inverse_cdf(double p) {
assert(0.0 < p && p < 1.0);
double q, r, val;
q = p - 0.5;
/*-- use AS 241 --- */
/* double ppnd16_(double *p, long *ifault)*/
/* ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3
Produces the normal deviate Z corresponding to a given lower
tail area of P; Z is accurate to about 1 part in 10**16.
(original fortran code used PARAMETER(..) for the coefficients
and provided hash codes for checking them...)
*/
if (fabs(q) <= .425) {/* 0.075 <= p <= 0.925 */
r = .180625 - q * q;
val =
q * (((((((r * 2509.0809287301226727 +
33430.575583588128105) * r + 67265.770927008700853) * r +
45921.953931549871457) * r + 13731.693765509461125) * r +
1971.5909503065514427) * r + 133.14166789178437745) * r +
3.387132872796366608)
/ (((((((r * 5226.495278852854561 +
28729.085735721942674) * r + 39307.89580009271061) * r +
21213.794301586595867) * r + 5394.1960214247511077) * r +
687.1870074920579083) * r + 42.313330701600911252) * r + 1.);
}
else { /* closer than 0.075 from {0,1} boundary */
/* r = min(p, 1-p) < 0.075 */
if (q > 0)
r = 1.0 - p;
else
r = p;
r = sqrt(- log(r));
/* r = sqrt(-log(r)) <==> min(p, 1-p) = exp( - r^2 ) */
if (r <= 5.) { /* <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11 */
r += -1.6;
val = (((((((r * 7.7454501427834140764e-4 +
.0227238449892691845833) * r + .24178072517745061177) *
r + 1.27045825245236838258) * r +
3.64784832476320460504) * r + 5.7694972214606914055) *
r + 4.6303378461565452959) * r +
1.42343711074968357734)
/ (((((((r *
1.05075007164441684324e-9 + 5.475938084995344946e-4) *
r + .0151986665636164571966) * r +
.14810397642748007459) * r + .68976733498510000455) *
r + 1.6763848301838038494) * r +
2.05319162663775882187) * r + 1.);
}
else { /* very close to 0 or 1 */
r += -5.;
val = (((((((r * 2.01033439929228813265e-7 +
2.71155556874348757815e-5) * r +
.0012426609473880784386) * r + .026532189526576123093) *
r + .29656057182850489123) * r +
1.7848265399172913358) * r + 5.4637849111641143699) *
r + 6.6579046435011037772)
/ (((((((r *
2.04426310338993978564e-15 + 1.4215117583164458887e-7)*
r + 1.8463183175100546818e-5) * r +
7.868691311456132591e-4) * r + .0148753612908506148525)
* r + .13692988092273580531) * r +
.59983220655588793769) * r + 1.);
}
if(q < 0.0)
val = -val;
/* return (q >= 0.)? r : -r ;*/
}
return val;
}
// https://stackoverflow.com/a/19039500/238609
double slope(const std::vector<double>& x, const std::vector<double>& y) {
const auto n = x.size();
const auto s_x = std::accumulate(x.begin(), x.end(), 0.0);
const auto s_y = std::accumulate(y.begin(), y.end(), 0.0);
const auto s_xx = std::inner_product(x.begin(), x.end(), x.begin(), 0.0);
const auto s_xy = std::inner_product(x.begin(), x.end(), y.begin(), 0.0);
const auto a = (n * s_xy - s_x * s_y) / (n * s_xx - s_x * s_x);
return a;
}
//https://stats.stackexchange.com/a/7459/14524
// returns alpha parameter of zipf distribution
double fit_zipf(const vector<double>& y) {
// assume input is log-scaled
// fit a log-log model
assert(y.size());
vector<double> ly(y.size());
for (int i = 0; i < ly.size(); ++i) {
//cerr << y[i] << " ";
ly[i] = log(y[i]);
}
//cerr << endl;
vector<double> lx(y.size());
for (int i = 1; i <= lx.size(); ++i) {
lx[i-1] = log(i);
}
return -slope(lx, ly);
}
double fit_fixed_shape_max_exponential(const vector<double>& x, double shape, double tolerance) {
// Fit S for a fixed N with the density of the maximum of N exponential variables
//
// NS exp(-Sx) (1 - exp(-Sx))^(N - 1)
//
// where S is the rate
// where N is the shape
double x_sum = 0;
double x_max = numeric_limits<double>::lowest();
for (const double& val : x) {
x_sum += val;
x_max = max(x_max, val);
}
// compute the log of the 1st and 2nd derivatives for the log likelihood (split up by positive and negative summands)
// we have to do it this wonky way because the exponentiated numbers get very large and cause overflow otherwise
double log_deriv_neg_part = log(x_sum);
function<double(double)> log_deriv_pos_part = [&](double rate) {
double accumulator = numeric_limits<double>::lowest();
for (const double& val : x) {
if (val > 0.0) {
// should always be > 0, but just so we don't blow up on some very small graphs
accumulator = add_log(accumulator, log(val) - rate * val - log(1.0 - exp(-rate * val)));
}
}
accumulator += log(shape - 1.0);
return add_log(accumulator, log(x.size() / rate));
};
function<double(double)> log_deriv2_neg_part = [&](double rate) {
double accumulator = numeric_limits<double>::lowest();
for (const double& val : x) {
if (val > 0.0) {
// should always be > 0, but just so we don't blow up on some very small graphs
accumulator = add_log(accumulator, 2.0 * log(val) - rate * val - 2.0 * log(1.0 - exp(-rate * val)));
}
}
accumulator += log(shape - 1.0);
return add_log(accumulator, log(x.size() / (rate * rate)));
};
// set a maximum so this doesn't get in an infinite loop even when numerical issues
// prevent convergence
size_t max_iters = 1000;
size_t iter = 0;
// use Newton's method to find the MLE
double rate = 1.0 / x_max;
double prev_rate = rate * (1.0 + 10.0 * tolerance);
while (abs(prev_rate / rate - 1.0) > tolerance && iter < max_iters) {
prev_rate = rate;
double log_d2 = log_deriv2_neg_part(rate);
double log_d_pos = log_deriv_pos_part(rate);
double log_d_neg = log_deriv_neg_part;
// determine if the value of the 1st deriv is positive or negative, and compute the
// whole ratio to the 2nd deriv from the positive and negative parts accordingly
if (log_d_pos > log_d_neg) {
rate += exp(subtract_log(log_d_pos, log_d_neg) - log_d2);
}
else {
rate -= exp(subtract_log(log_d_neg, log_d_pos) - log_d2);
}
++iter;
}
return rate;
}
double fit_fixed_rate_max_exponential(const vector<double>& x, double rate, double tolerance) {
// Fit N for a fixed S with the density of the maximum of N exponential variables
//
// NS exp(-Sx) (1 - exp(-Sx))^(N - 1)
//
// where S is the rate
// where N is the shape
function<double(double)> log_likelihood = [&](double shape) {
return max_exponential_log_likelihood(x, rate, shape);
};
// expand interval until we find a region where the likelihood is decreasing with
// shape increasing
double max_shape = 1.0;
double max_shape_likelihood = log_likelihood(max_shape);
double prev_max_shape_likelihood = max_shape_likelihood - 1.0;
while (prev_max_shape_likelihood <= max_shape_likelihood) {
prev_max_shape_likelihood = max_shape_likelihood;
max_shape *= 2.0;
max_shape_likelihood = log_likelihood(max_shape);
}
// use golden section search to find the maximum
return golden_section_search(log_likelihood, 0.0, max_shape, tolerance);
}
pair<double, double> fit_max_exponential(const vector<double>& x,
double tolerance) {
// set a maximum so this doesn't get in an infinite loop even when numerical issues
// prevent convergence
size_t max_iters = 1000;
size_t iter = 0;
// alternate maximizing shape and rate until convergence
double shape = 1.0;
double rate = fit_fixed_shape_max_exponential(x, shape, tolerance / 2.0);
double prev_shape = shape + 10.0 * tolerance;
double prev_rate = rate + 10.0 * tolerance;
while ((abs(prev_rate / rate - 1.0) > tolerance / 2.0
|| abs(prev_shape / shape - 1.0) > tolerance / 2.0)
&& iter < max_iters) {
prev_shape = shape;
prev_rate = rate;
shape = fit_fixed_rate_max_exponential(x, rate, tolerance / 2.0);
rate = fit_fixed_shape_max_exponential(x, shape, tolerance / 2.0);
++iter;
}
return pair<double, double>(rate, shape);
}
//tuple<double, double, double> fit_offset_max_exponential(const vector<double>& x,
// const function<double(double)>& shape_prior,
// double tolerance) {
//
// // the max log likelihood of the data for a fixed location parameter
// function<double(double)> fit_log_likelihood = [&](double loc) {
// vector<double> x_offset(x.size());
// for (size_t i = 0; i < x.size(); ++i) {
// x_offset[i] = x[i] - loc;
// }
// pair<double, double> params = fit_max_exponential(x_offset);
// return max_exponential_log_likelihood(x, params.first, params.second, loc) + log(shape_prior(shape));
// };
//
// // the maximum value of location so that all data points are in the support
// double max_loc = *min_element(x.begin(), x.end());
// // search with exponentially expanding windows backward to find the window
// // that contains the highest likelihood MLE for the location
// double min_loc = max_loc - 1.0;
// double log_likelihood = numeric_limits<double>::lowest();
// double probe_log_likelihood = fit_log_likelihood(min_loc);
// while (probe_log_likelihood > log_likelihood) {
// log_likelihood = probe_log_likelihood;
// double probe_loc = max_loc - 2.0 * (max_loc - min_loc);
// probe_log_likelihood = fit_log_likelihood(probe_loc);
// min_loc = probe_loc;
// }
//
// // find the MLE location
// double location = golden_section_search(fit_log_likelihood, min_loc, max_loc, tolerance);
//
// // fit the scale and shape given the locatino
// vector<double> x_offset(x.size());
// for (size_t i = 0; i < x.size(); ++i) {
// x_offset[i] = x[i] - location;
// }
// auto params = fit_max_exponential(x_offset);
//
// return make_tuple(params.first, params.second, location);
//}
double max_exponential_log_likelihood(const vector<double>& x, double rate, double shape,
double location) {
double accumulator_1 = 0.0;
double accumulator_2 = 0.0;
for (const double& val : x) {
if (val <= location) {
// this should be -inf, but doing this avoids some numerical problems
continue;
}
accumulator_1 += log(1.0 - exp(-rate * (val - location)));
accumulator_2 += (val - location);
}
return x.size() * log(rate * shape) - rate * accumulator_2 + (shape - 1.0) * accumulator_1;
}
pair<double, double> fit_weibull(const vector<double>& x) {
// Method adapted from Datsiou & Overend (2018) Weibull parameter estimation and
// goodness-of-fit for glass strength data
assert(x.size() >= 3);
vector<double> x_local = x;
sort(x_local.begin(), x_local.end());
// regress the transformed ordered data points against the inverse CDF
vector<vector<double>> X(x_local.size() - 1, vector<double>(2, 1.0));
vector<double> y(X.size());
for (size_t i = 1; i < x_local.size(); ++i) {
X[i - 1][1] = log(x_local[i]);
y[i] = log(-log(1.0 - double(i) / double(x.size())));
}
vector<double> coefs = regress(X, y);
// convert the coefficients into the parameters
return make_pair(exp(-coefs[0] / coefs[1]), coefs[1]);
}
tuple<double, double, double> fit_offset_weibull(const vector<double>& x,
double tolerance) {
// the max log likelihood of the data for a fixed location parameter
function<double(double)> fit_log_likelihood = [&](double loc) {
vector<double> x_offset(x.size());
for (size_t i = 0; i < x.size(); ++i) {
x_offset[i] = x[i] - loc;
}
pair<double, double> params = fit_weibull(x_offset);
return weibull_log_likelihood(x, params.first, params.second, loc);
};
// the maximum value of location so that all data points are in the support
double max_loc = *min_element(x.begin(), x.end());
// search with exponentially expanding windows backward to find the window
// that contains the highest likelihood MLE for the location
double min_loc = max_loc - 1.0;
double log_likelihood = numeric_limits<double>::lowest();
double probe_log_likelihood = fit_log_likelihood(min_loc);
while (probe_log_likelihood > log_likelihood) {
log_likelihood = probe_log_likelihood;
double probe_loc = max_loc - 2.0 * (max_loc - min_loc);
probe_log_likelihood = fit_log_likelihood(probe_loc);
min_loc = probe_loc;
}
// find the MLE location
double location = golden_section_search(fit_log_likelihood, min_loc, max_loc, tolerance);
// fit the scale and shape given the locatino
vector<double> x_offset(x.size());
for (size_t i = 0; i < x.size(); ++i) {
x_offset[i] = x[i] - location;
}
auto params = fit_weibull(x_offset);
return make_tuple(params.first, params.second, location);
}
double weibull_log_likelihood(const vector<double>& x, double scale, double shape,
double location) {
double sum_1 = 0.0, sum_2 = 0.0;
for (const double& val : x) {
sum_1 += log(val - location);
sum_2 += pow((val - location) / scale, shape);
}
return x.size() * (log(shape) - shape * log(scale)) + (shape - 1.0) * sum_1 - sum_2;
}
double golden_section_search(const function<double(double)>& f, double x_min, double x_max,
double tolerance) {
const static double inv_phi = (sqrt(5.0) - 1.0) / 2.0;
// the number of steps needed to achieve the required precision (precalculating avoids
// fiddly floating point issues on the breakout condition)
size_t steps = size_t(ceil(log(tolerance / (x_max - x_min)) / log(inv_phi)));
// the two interior points we will evaluate the function at
double x_lo = x_min + inv_phi * inv_phi * (x_max - x_min);
double x_hi = x_min + inv_phi * (x_max - x_min);
// the function value at the two interior points
double f_lo = f(x_lo);
double f_hi = f(x_hi);
for (size_t step = 0; step < steps; ++step) {
if (f_lo < f_hi) {
// there is a max in one of the right two sections
x_min = x_lo;
x_lo = x_hi;
x_hi = x_min + inv_phi * (x_max - x_min);
f_lo = f_hi;
f_hi = f(x_hi);
}
else {
// there is a max in one of the left two sections
x_max = x_hi;
x_hi = x_lo;
x_lo = x_min + inv_phi * inv_phi * (x_max - x_min);
f_hi = f_lo;
f_lo = f(x_lo);
}
}
// return the midpoint of the interval we narrowed down to
if (f_lo > f_hi) {
return (x_min + x_hi) / 2.0;
}
else {
return (x_lo + x_max) / 2.0;
}
}
double phred_to_prob(uint8_t phred) {
// Use a statically initialized lookup table
static std::vector<double> prob_by_phred([](void) -> std::vector<double> {
std::vector<double> to_return;
to_return.reserve((int)numeric_limits<uint8_t>::max() + 1);
for (int i = 0; i <= numeric_limits<uint8_t>::max(); i++) {
to_return.push_back(phred_to_prob((double) i));
}
return to_return;
}());
// Look up in it
return prob_by_phred[phred];
}
double phred_for_at_least_one(size_t p, size_t n) {
/**
* Assume that we have n <= MAX_AT_LEAST_ONE_EVENTS independent events with probability p each.
* Let x be the AT_LEAST_ONE_PRECISION most significant bits of p. Then
*
* phred_at_least_one[(n << AT_LEAST_ONE_PRECISION) + x]
*
* is an approximate phred score of at least one event occurring.
*
* We exploit the magical thread-safety of static local initialization to
* fill this in exactly once when needed.
*/
static std::vector<double> phred_at_least_one([](void) -> std::vector<double> {
// Initialize phred_at_least_one by copying from the result of this function.
std::vector<double> to_return;
size_t values = static_cast<size_t>(1) << AT_LEAST_ONE_PRECISION;
to_return.resize((MAX_AT_LEAST_ONE_EVENTS + 1) * values, 0.0);
for (size_t n = 1; n <= MAX_AT_LEAST_ONE_EVENTS; n++) {
for (size_t p = 0; p < values; p++) {
// Because each p represents a range of probabilities, we choose a value
// in the middle for the approximation.
double probability = (2 * p + 1) / (2.0 * values);
// Phred for at least one out of n.
to_return[(n << AT_LEAST_ONE_PRECISION) + p] = prob_to_phred(1.0 - std::pow(1.0 - probability, n));
}
}
return to_return;
}());
// Make sure we don't go out of bounds.
assert(n <= MAX_AT_LEAST_ONE_EVENTS);
p >>= 8 * sizeof(size_t) - AT_LEAST_ONE_PRECISION;
return phred_at_least_one[(n << AT_LEAST_ONE_PRECISION) + p];
}
// This is just like phred_for_at_least_one but we don't prob_to_phred
// TODO: combine the code somehow?
double prob_for_at_least_one(size_t p, size_t n) {
/**
* Assume that we have n <= MAX_AT_LEAST_ONE_EVENTS independent events with probability p each.
* Let x be the AT_LEAST_ONE_PRECISION most significant bits of p. Then
*
* prob_at_least_one[(n << AT_LEAST_ONE_PRECISION) + x]
*
* is an approximate probability of at least one event occurring.
*
* We exploit the magical thread-safety of static local initialization to
* fill this in exactly once when needed.
*/
static std::vector<double> prob_at_least_one([](void) -> std::vector<double> {
// Initialize prob_at_least_one by copying from the result of this function.
std::vector<double> to_return;
size_t values = static_cast<size_t>(1) << AT_LEAST_ONE_PRECISION;
to_return.resize((MAX_AT_LEAST_ONE_EVENTS + 1) * values, 0.0);
for (size_t n = 1; n <= MAX_AT_LEAST_ONE_EVENTS; n++) {
for (size_t p = 0; p < values; p++) {
// Because each p represents a range of probabilities, we choose a value
// in the middle for the approximation.
double probability = (2 * p + 1) / (2.0 * values);
// Prob for at least one out of n.
to_return[(n << AT_LEAST_ONE_PRECISION) + p] = 1.0 - std::pow(1.0 - probability, n);
}
}
return to_return;
}());
// Make sure we don't go out of bounds.
assert(n <= MAX_AT_LEAST_ONE_EVENTS);
p >>= 8 * sizeof(size_t) - AT_LEAST_ONE_PRECISION;
return prob_at_least_one[(n << AT_LEAST_ONE_PRECISION) + p];
}
vector<vector<double>> transpose(const vector<vector<double>>& A) {
vector<vector<double>> AT(A.front().size());
for (size_t i = 0; i < AT.size(); ++i) {
AT[i].resize(A.size());
for (size_t j = 0; j < A.size(); ++j) {
AT[i][j] = A[j][i];
}
}
return AT;
}
vector<vector<double>> matrix_multiply(const vector<vector<double>>& A,
const vector<vector<double>>& B) {
assert(A.front().size() == B.size());
vector<vector<double>> AB(A.size());
for (size_t i = 0; i < A.size(); ++i) {
AB[i].resize(B.front().size(), 0.0);
for (size_t j = 0; j < B.front().size(); ++j) {
for (size_t k = 0; k < B.size(); ++k) {
AB[i][j] += A[i][k] * B[k][j];
}
}
}
return AB;
}
vector<double> matrix_multiply(const vector<vector<double>>& A,
const vector<double>& b) {
assert(A.front().size() == b.size());
vector<double> Ab(A.size(), 0.0);
for (size_t i = 0; i < A.size(); ++i) {
for (size_t j = 0; j < A.front().size(); ++j) {
Ab[i] += A[i][j] * b[j];
}
}
return Ab;
}
vector<vector<double>> matrix_invert(const vector<vector<double>>& A) {
// invert by Gaussian elimination
assert(A.front().size() == A.size());
vector<vector<double>> A_inv(A.size());
for (size_t i = 0; i < A.size(); ++i) {
A_inv[i].resize(A.size(), 0.0);
A_inv[i][i] = 1.0;
}
// a non-const local copy
auto A_loc = A;
// forward loop, make upper triangular
for (int64_t i = 0; i < A_loc.size(); ++i) {
int64_t ii = i;
while (A_loc[ii][i] == 0.0 && ii < A_loc.size()) {
++ii;
}
if (ii == A_loc.size()) {
std::runtime_error("error: matrix is not invertible!");
}
swap(A_loc[i],A_loc[ii]);
swap(A_inv[i], A_inv[ii]);
// make the diagonal entry 1
double factor = A_loc[i][i];
for (int64_t j = 0; j < A_loc.size(); ++j) {
A_loc[i][j] /= factor;
A_inv[i][j] /= factor;
}
// make the off diagonals in one column 0's
for (ii = i + 1; ii < A_loc.size(); ++ii) {
factor = A_loc[ii][i];
for (size_t j = 0; j < A_loc.size(); ++j) {
A_loc[ii][j] -= factor * A_loc[i][j];
A_inv[ii][j] -= factor * A_inv[i][j];
}
}
}
// backward loop, make identity
for (int64_t i = A_loc.size() - 1; i >= 0; --i) {
// make the off diagonals in one column 0's
for (int64_t ii = i - 1; ii >= 0; --ii) {
double factor = A_loc[ii][i];
for (size_t j = 0; j < A_loc.size(); ++j) {
A_loc[ii][j] -= factor * A_loc[i][j];
A_inv[ii][j] -= factor * A_inv[i][j];
}
}
}
return A_inv;
}
vector<double> regress(const vector<vector<double>>& X, vector<double>& y) {
auto X_t = transpose(X);
return matrix_multiply(matrix_multiply(matrix_invert(matrix_multiply(X_t, X)), X_t), y);
}
}
|