File: Stochastic.py

package info (click to toggle)
xmds2 3.0.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 52,068 kB
  • sloc: python: 63,652; javascript: 9,230; cpp: 3,929; ansic: 1,463; makefile: 121; sh: 54
file content (791 lines) | stat: -rw-r--r-- 35,999 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
#!/usr/bin/env python3




##################################################
## DEPENDENCIES
import sys
import os
import os.path
try:
    import builtins as builtin
except ImportError:
    import __builtin__ as builtin
from os.path import getmtime, exists
import time
import types
from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion
from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple
from Cheetah.Template import Template
from Cheetah.DummyTransaction import *
from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList
from Cheetah.CacheRegion import CacheRegion
import Cheetah.Filters as Filters
import Cheetah.ErrorCatchers as ErrorCatchers
from Cheetah.compat import unicode
from xpdeint.Features._Stochastic import _Stochastic
from xpdeint.Operators.DeltaAOperator import DeltaAOperator

##################################################
## MODULE CONSTANTS
VFFSL=valueFromFrameOrSearchList
VFSL=valueFromSearchList
VFN=valueForName
currentTime=time.time
__CHEETAH_version__ = '3.2.3'
__CHEETAH_versionTuple__ = (3, 2, 3, 'final', 0)
__CHEETAH_genTime__ = 1558054969.8204257
__CHEETAH_genTimestamp__ = 'Fri May 17 11:02:49 2019'
__CHEETAH_src__ = '/home/mattias/xmds-2.2.3/admin/staging/xmds-3.0.0/xpdeint/Features/Stochastic.tmpl'
__CHEETAH_srcLastModified__ = 'Thu Apr  4 16:29:24 2019'
__CHEETAH_docstring__ = 'Autogenerated by Cheetah: The Python-Powered Template Engine'

if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple:
    raise AssertionError(
      'This template was compiled with Cheetah version'
      ' %s. Templates compiled before version %s must be recompiled.'%(
         __CHEETAH_version__, RequiredCheetahVersion))

##################################################
## CLASSES

class Stochastic(_Stochastic):

    ##################################################
    ## CHEETAH GENERATED METHODS


    def __init__(self, *args, **KWs):

        super(Stochastic, self).__init__(*args, **KWs)
        if not self._CHEETAH__instanceInitialized:
            cheetahKWArgs = {}
            allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split()
            for k,v in KWs.items():
                if k in allowedKWs: cheetahKWArgs[k] = v
            self._initCheetahInstance(**cheetahKWArgs)
        

    def description(self, **KWS):



        ## Generated from @def description: Stochastic at line 28, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        write('''Stochastic''')
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def globals(self, **KWS):



        ## CHEETAH: generated from @def globals at line 35, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        _v = super(Stochastic, self).globals()
        if _v is not None: write(_filter(_v))
        # 
        for integrator in self.adaptiveIntegratorsWithNoises() : # generated from line 39, col 3
            write('''// ********************************************************
// struct used to store step size and noise vector to ensure
// stochastic convergence
struct _dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 43, col 26
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 43, col 26.
            write(''' {
  real _step;
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 46, col 5
                write('''  ''')
                _v = VFFSL(SL,"noiseVector.type",True) # '$noiseVector.type' on line 47, col 3
                if _v is not None: write(_filter(_v, rawExpr='$noiseVector.type')) # from line 47, col 3.
                write('''* _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 47, col 23
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 47, col 23.
                write(''';
''')
            write('''  
  _dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 50, col 21
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 50, col 21.
            write('''() {
  _step = 0;
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 53, col 5
                write('''  _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 54, col 4
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 54, col 4.
                write(''' = NULL;
''')
            write('''  }
  ~_dtdWstore_segment''')
            _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 57, col 22
            if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 57, col 22.
            write('''() {
''')
            # 
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 59, col 5
                write('''    if (_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 60, col 10
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 60, col 10.
                write(''')
      xmds_free(_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 61, col 18
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 61, col 18.
                write(''');
''')
            write('''  }
};
''')
        # 
        for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 67, col 3
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 1
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 1.
            write('''* ''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 68, col 17
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 68, col 17.
            write('''_invsqrt = (''')
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 56
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 56.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 92
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 92.
            write(''') * (''')
            _v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 68, col 111
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 68, col 111.
            write('''));
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def mainBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def mainBegin($dict) at line 73, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 75, col 3
            write('''for (long ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 11
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 11.
            write(''' = 0; ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 36
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 36.
            write(''' < ''')
            _v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 76, col 58
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 76, col 58.
            write('''; ''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 83
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 83.
            write('''++) {
  ''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 3
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 3.
            write('''_invsqrt[''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 39
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 39.
            write('''] = (real)1.0/sqrt(''')
            _v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 77
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 77.
            write('''[''')
            _v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 105
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 105.
            write('''] * (''')
            _v = VFFSL(SL,"dimRep.volumePrefactor",True) # '${dimRep.volumePrefactor}' on line 77, col 129
            if _v is not None: write(_filter(_v, rawExpr='${dimRep.volumePrefactor}')) # from line 77, col 129.
            write('''));
}
''')
        write('''
''')
        for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 81, col 3
            _v = VFFSL(SL,"noiseVector.initialiseGlobalSeeds",True) # '${noiseVector.initialiseGlobalSeeds}' on line 82, col 1
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseGlobalSeeds}')) # from line 82, col 1.
            write('''
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def topLevelSequenceBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def topLevelSequenceBegin($dict) at line 88, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 90, col 3
            _v = VFFSL(SL,"noiseVector.initialiseLocalSeeds",True) # '${noiseVector.initialiseLocalSeeds}' on line 91, col 1
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseLocalSeeds}')) # from line 91, col 1.
            write('''
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepBegin($dict) at line 97, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 101, col 3
            return
        # 
        write('''typedef _dtdWstore_segment''')
        _v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 105, col 27
        if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 105, col 27.
        write(''' _dtdWstore;
list<_dtdWstore> _noise_list;
list<_dtdWstore>::iterator _active_node;
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepEnd(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepEnd($dict) at line 111, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 115, col 3
            return
        # 
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 119, col 3
            write('''_active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 9
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 9.
            write(''' = _''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 30
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 30.
            write(''';
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateFixedStepInnerLoopBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateFixedStepInnerLoopBegin(dict) at line 125, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 129, col 3
            return
        # 
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 133, col 3
            write('''
_active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 9
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 9.
            write(''' = _''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 30
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 30.
            write(''';
''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}" on line 136, col 1
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}")) # from line 136, col 1.
            write('''
''')
        # 
        if 'ErrorCheck' in VFFSL(SL,"features",True): # generated from line 139, col 3
            write('''
if (!_half_step) { // For the full step we average the two noises.
''')
            for noiseVector in integrator.dynamicNoiseVectors: # generated from line 142, col 5
                # 
                write('''  _active_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 11
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 11.
                write(''' = _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 32
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 32.
                write('''2;
  ''')
                _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}" on line 145, col 3
                if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}")) # from line 145, col 3.
                write('''
  ''')
                _v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([noiseVector],
  """_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);
  """, basis = noiseVector.initialBasis)
                if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([noiseVector],\n  """_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);\n  """, basis = noiseVector.initialBasis), autoIndent=True}')) # from line 146, col 3.
                write('''  _active_''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 11
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 11.
                write(''' = _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 32
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 32.
                write(''';
''')
            write('''}
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def integrateAdaptiveStepInnerLoopBegin(self, dict, **KWS):



        ## CHEETAH: generated from @def integrateAdaptiveStepInnerLoopBegin(dict) at line 156, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 160, col 3
            return
        # 
        write('''if (_noise_list.empty()) {
  // Noise list empty so start afresh
  _noise_list.push_front(_dtdWstore());
  _active_node = _noise_list.begin();
  _active_node->_step = _step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 169, col 3
            write('''  
  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 171, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 171, col 11.
            write(''' =  (''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 33
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 33.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 74
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 74.
            write(''') * MAX(''')
            _v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 171, col 101
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 171, col 101.
            write(''',1));
  _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 18
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 18.
            write(''' = _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 46.
            write(''';
  ''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_step') # "${noiseVector.functions['evaluate'].call(_step = '_step')}" on line 173, col 3
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_step')}")) # from line 173, col 3.
            write('''
''')
        write('''} else if (_step*(1.0 + _EPSILON) < _noise_list.begin()->_step) {
  // Create new smallest time step
  
  // If the step is greater than 50% of the current smallest step size
  // then we should just use half the step size because we are going to have
  // to do the other half at some point too.
  
  const real _old_smallest_step = _noise_list.begin()->_step;
  
  if (_step > 0.5*_old_smallest_step*(1.0 + _EPSILON))
    _step = 0.5*_old_smallest_step;
  
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 187, col 3
            #  It is necessary to transform the noise vector back to its original basis, as it may have been transformed in the mean time.
            write('''  ''')
            _v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}' on line 189, col 3
            if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}')) # from line 189, col 3.
            write('''  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 190, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 190, col 11.
            write(''' = (''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 32
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 32.
            write('''*) xmds_malloc(sizeof(''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 73
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 73.
            write(''') * MAX(''')
            _v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 190, col 100
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 190, col 100.
            write(''',1));
  ''')
            _v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['split'],"call",False)(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id) # "${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}" on line 191, col 3
            if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}")) # from line 191, col 3.
            write('''
  
''')
        # 
        write('''  _noise_list.push_front(_dtdWstore());
  _active_node = _noise_list.begin();
  _active_node->_step = _step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 198, col 3
            write('''  _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 18
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 18.
            write(''' = _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 46.
            write(''';
''')
        write('''} else {
  // Use step already attempted
  for (_active_node = _noise_list.begin(); (_active_node != _noise_list.end()) && (_active_node->_step <= _step*(1.0 + _EPSILON)); _active_node++)
    ;
  
  _active_node--;
  _step = _active_node->_step;
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 208, col 3
            write('''  _active_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 11
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 11.
            write(''' = _active_node->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 46
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 46.
            write(''';
''')
            if noiseVector.needsTransforms: # generated from line 210, col 5
                write('''  _''')
                _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 211, col 4
                if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 211, col 4.
                write('''_basis = ''')
                _v = VFFSL(SL,"basisIndexForBasis",False)(noiseVector.initialBasis) # '${basisIndexForBasis(noiseVector.initialBasis)}' on line 211, col 30
                if _v is not None: write(_filter(_v, rawExpr='${basisIndexForBasis(noiseVector.initialBasis)}')) # from line 211, col 30.
                write(''';
''')
        write('''  
  if ( _break_next && !((_''')
        _v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 27
        if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 27.
        write('''_local + _step)*(1.0 + _EPSILON) >= _''')
        _v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 87
        if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 87.
        write('''_break_next))
    _break_next = false;
} 

''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def adaptiveStepSucceeded(self, dict, **KWS):



        ## CHEETAH: generated from @def adaptiveStepSucceeded(dict) at line 222, col 1.
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        # 
        integrator = dict['caller']
        # 
        if not integrator.dynamicNoiseVectors: # generated from line 226, col 3
            return
        # 
        write('''
// Trim dtdW tree
_active_node++;
if (_active_node == _noise_list.end())
  _noise_list.clear();
else {
  for (list<_dtdWstore>::iterator _temp_iter = _active_node; _temp_iter != _noise_list.end(); _temp_iter++) {
    _temp_iter->_step -= _step;
    real _temp_step = _temp_iter->_step;
    
''')
        for noiseVector in integrator.dynamicNoiseVectors: # generated from line 240, col 3
            #  The noise vector must be transformed back to its initial basis in case it has been transformed during the integration step.
            write('''    ''')
            _v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}' on line 242, col 5
            if _v is not None: write(_filter(_v, autoIndent = True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}')) # from line 242, col 5.
            write('''    ''')
            _v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 243, col 5
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 243, col 5.
            write('''* _temp_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 32
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 32.
            write(''' = _temp_iter->_''')
            _v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 65
            if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 65.
            write(''';
    ''')
            _v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([VFFSL(SL,"noiseVector",True)],
"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;
""")
            if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([$noiseVector],\n"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;\n"""), autoIndent=True}')) # from line 244, col 5.
        write('''  }
  
  _noise_list.erase(_noise_list.begin(), _active_node);
}
''')
        # 
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        

    def writeBody(self, **KWS):



        ## CHEETAH: main method generated for this template
        trans = KWS.get("trans")
        if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
            trans = self.transaction # is None unless self.awake() was called
        if not trans:
            trans = DummyTransaction()
            _dummyTrans = True
        else: _dummyTrans = False
        write = trans.response().write
        SL = self._CHEETAH__searchList
        _filter = self._CHEETAH__currentFilter
        
        ########################################
        ## START - generated method body
        
        write('''
''')
        # 
        # Stochastic.tmpl
        # 
        # Created by Graham Dennis on 2007-12-11.
        # 
        # Copyright (c) 2007-2012, Graham Dennis and Joe Hope
        # 
        # This program is free software: you can redistribute it and/or modify
        # it under the terms of the GNU General Public License as published by
        # the Free Software Foundation, either version 2 of the License, or
        # (at your option) any later version.
        # 
        # This program is distributed in the hope that it will be useful,
        # but WITHOUT ANY WARRANTY; without even the implied warranty of
        # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        # GNU General Public License for more details.
        # 
        # You should have received a copy of the GNU General Public License
        # along with this program.  If not, see <http://www.gnu.org/licenses/>.
        # 
        write('''


''')
        # 
        #   Globals
        write('''







''')
        
        ########################################
        ## END - generated method body
        
        return _dummyTrans and trans.response().getvalue() or ""
        
    ##################################################
    ## CHEETAH GENERATED ATTRIBUTES


    _CHEETAH__instanceInitialized = False

    _CHEETAH_version = __CHEETAH_version__

    _CHEETAH_versionTuple = __CHEETAH_versionTuple__

    _CHEETAH_genTime = __CHEETAH_genTime__

    _CHEETAH_genTimestamp = __CHEETAH_genTimestamp__

    _CHEETAH_src = __CHEETAH_src__

    _CHEETAH_srcLastModified = __CHEETAH_srcLastModified__

    featureName = 'Stochastic'

    uselib = ['randomisation_seeding']

    _mainCheetahMethod_for_Stochastic = 'writeBody'

## END CLASS DEFINITION

if not hasattr(Stochastic, '_initCheetahAttributes'):
    templateAPIClass = getattr(Stochastic,
                               '_CHEETAH_templateClass',
                               Template)
    templateAPIClass._addCheetahPlumbingCodeToClass(Stochastic)


# CHEETAH was developed by Tavis Rudd and Mike Orr
# with code, advice and input from many other volunteers.
# For more information visit https://cheetahtemplate.org/

##################################################
## if run from command line:
if __name__ == '__main__':
    from Cheetah.TemplateCmdLineIface import CmdLineIface
    CmdLineIface(templateObj=Stochastic()).run()