1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
#!/usr/bin/env python3
##################################################
## DEPENDENCIES
import sys
import os
import os.path
try:
import builtins as builtin
except ImportError:
import __builtin__ as builtin
from os.path import getmtime, exists
import time
import types
from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion
from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple
from Cheetah.Template import Template
from Cheetah.DummyTransaction import *
from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList
from Cheetah.CacheRegion import CacheRegion
import Cheetah.Filters as Filters
import Cheetah.ErrorCatchers as ErrorCatchers
from Cheetah.compat import unicode
from xpdeint.Features._Stochastic import _Stochastic
from xpdeint.Operators.DeltaAOperator import DeltaAOperator
##################################################
## MODULE CONSTANTS
VFFSL=valueFromFrameOrSearchList
VFSL=valueFromSearchList
VFN=valueForName
currentTime=time.time
__CHEETAH_version__ = '3.2.3'
__CHEETAH_versionTuple__ = (3, 2, 3, 'final', 0)
__CHEETAH_genTime__ = 1558054969.8204257
__CHEETAH_genTimestamp__ = 'Fri May 17 11:02:49 2019'
__CHEETAH_src__ = '/home/mattias/xmds-2.2.3/admin/staging/xmds-3.0.0/xpdeint/Features/Stochastic.tmpl'
__CHEETAH_srcLastModified__ = 'Thu Apr 4 16:29:24 2019'
__CHEETAH_docstring__ = 'Autogenerated by Cheetah: The Python-Powered Template Engine'
if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple:
raise AssertionError(
'This template was compiled with Cheetah version'
' %s. Templates compiled before version %s must be recompiled.'%(
__CHEETAH_version__, RequiredCheetahVersion))
##################################################
## CLASSES
class Stochastic(_Stochastic):
##################################################
## CHEETAH GENERATED METHODS
def __init__(self, *args, **KWs):
super(Stochastic, self).__init__(*args, **KWs)
if not self._CHEETAH__instanceInitialized:
cheetahKWArgs = {}
allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split()
for k,v in KWs.items():
if k in allowedKWs: cheetahKWArgs[k] = v
self._initCheetahInstance(**cheetahKWArgs)
def description(self, **KWS):
## Generated from @def description: Stochastic at line 28, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
write('''Stochastic''')
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def globals(self, **KWS):
## CHEETAH: generated from @def globals at line 35, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
_v = super(Stochastic, self).globals()
if _v is not None: write(_filter(_v))
#
for integrator in self.adaptiveIntegratorsWithNoises() : # generated from line 39, col 3
write('''// ********************************************************
// struct used to store step size and noise vector to ensure
// stochastic convergence
struct _dtdWstore_segment''')
_v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 43, col 26
if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 43, col 26.
write(''' {
real _step;
''')
#
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 46, col 5
write(''' ''')
_v = VFFSL(SL,"noiseVector.type",True) # '$noiseVector.type' on line 47, col 3
if _v is not None: write(_filter(_v, rawExpr='$noiseVector.type')) # from line 47, col 3.
write('''* _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 47, col 23
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 47, col 23.
write(''';
''')
write('''
_dtdWstore_segment''')
_v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 50, col 21
if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 50, col 21.
write('''() {
_step = 0;
''')
#
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 53, col 5
write(''' _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 54, col 4
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 54, col 4.
write(''' = NULL;
''')
write(''' }
~_dtdWstore_segment''')
_v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 57, col 22
if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 57, col 22.
write('''() {
''')
#
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 59, col 5
write(''' if (_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 60, col 10
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 60, col 10.
write(''')
xmds_free(_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 61, col 18
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 61, col 18.
write(''');
''')
write(''' }
};
''')
#
for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 67, col 3
_v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 1
if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 1.
write('''* ''')
_v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 68, col 17
if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 68, col 17.
write('''_invsqrt = (''')
_v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 56
if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 56.
write('''*) xmds_malloc(sizeof(''')
_v = VFFSL(SL,"dimRep.type",True) # '${dimRep.type}' on line 68, col 92
if _v is not None: write(_filter(_v, rawExpr='${dimRep.type}')) # from line 68, col 92.
write(''') * (''')
_v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 68, col 111
if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 68, col 111.
write('''));
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def mainBegin(self, dict, **KWS):
## CHEETAH: generated from @def mainBegin($dict) at line 73, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
for dimRep in self.nonUniformDimRepsNeededForGaussianNoise: # generated from line 75, col 3
write('''for (long ''')
_v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 11
if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 11.
write(''' = 0; ''')
_v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 36
if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 36.
write(''' < ''')
_v = VFFSL(SL,"dimRep.globalLattice",True) # '${dimRep.globalLattice}' on line 76, col 58
if _v is not None: write(_filter(_v, rawExpr='${dimRep.globalLattice}')) # from line 76, col 58.
write('''; ''')
_v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 76, col 83
if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 76, col 83.
write('''++) {
''')
_v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 3
if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 3.
write('''_invsqrt[''')
_v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 39
if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 39.
write('''] = (real)1.0/sqrt(''')
_v = VFFSL(SL,"dimRep.stepSizeArrayName",True) # '${dimRep.stepSizeArrayName}' on line 77, col 77
if _v is not None: write(_filter(_v, rawExpr='${dimRep.stepSizeArrayName}')) # from line 77, col 77.
write('''[''')
_v = VFFSL(SL,"dimRep.loopIndex",True) # '${dimRep.loopIndex}' on line 77, col 105
if _v is not None: write(_filter(_v, rawExpr='${dimRep.loopIndex}')) # from line 77, col 105.
write('''] * (''')
_v = VFFSL(SL,"dimRep.volumePrefactor",True) # '${dimRep.volumePrefactor}' on line 77, col 129
if _v is not None: write(_filter(_v, rawExpr='${dimRep.volumePrefactor}')) # from line 77, col 129.
write('''));
}
''')
write('''
''')
for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 81, col 3
_v = VFFSL(SL,"noiseVector.initialiseGlobalSeeds",True) # '${noiseVector.initialiseGlobalSeeds}' on line 82, col 1
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseGlobalSeeds}')) # from line 82, col 1.
write('''
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def topLevelSequenceBegin(self, dict, **KWS):
## CHEETAH: generated from @def topLevelSequenceBegin($dict) at line 88, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
for noiseVector in VFFSL(SL,"noiseVectors",True): # generated from line 90, col 3
_v = VFFSL(SL,"noiseVector.initialiseLocalSeeds",True) # '${noiseVector.initialiseLocalSeeds}' on line 91, col 1
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.initialiseLocalSeeds}')) # from line 91, col 1.
write('''
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def integrateAdaptiveStepBegin(self, dict, **KWS):
## CHEETAH: generated from @def integrateAdaptiveStepBegin($dict) at line 97, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
integrator = dict['caller']
#
if not integrator.dynamicNoiseVectors: # generated from line 101, col 3
return
#
write('''typedef _dtdWstore_segment''')
_v = VFFSL(SL,"integrator.segmentNumber",True) # '${integrator.segmentNumber}' on line 105, col 27
if _v is not None: write(_filter(_v, rawExpr='${integrator.segmentNumber}')) # from line 105, col 27.
write(''' _dtdWstore;
list<_dtdWstore> _noise_list;
list<_dtdWstore>::iterator _active_node;
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def integrateAdaptiveStepEnd(self, dict, **KWS):
## CHEETAH: generated from @def integrateAdaptiveStepEnd($dict) at line 111, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
integrator = dict['caller']
#
if not integrator.dynamicNoiseVectors: # generated from line 115, col 3
return
#
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 119, col 3
write('''_active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 9
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 9.
write(''' = _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 120, col 30
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 120, col 30.
write(''';
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def integrateFixedStepInnerLoopBegin(self, dict, **KWS):
## CHEETAH: generated from @def integrateFixedStepInnerLoopBegin(dict) at line 125, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
integrator = dict['caller']
#
if not integrator.dynamicNoiseVectors: # generated from line 129, col 3
return
#
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 133, col 3
write('''
_active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 9
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 9.
write(''' = _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 135, col 30
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 135, col 30.
write(''';
''')
_v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}" on line 136, col 1
if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep')}")) # from line 136, col 1.
write('''
''')
#
if 'ErrorCheck' in VFFSL(SL,"features",True): # generated from line 139, col 3
write('''
if (!_half_step) { // For the full step we average the two noises.
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 142, col 5
#
write(''' _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 11
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 11.
write(''' = _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 144, col 32
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 144, col 32.
write('''2;
''')
_v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_noiseStep') # "${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}" on line 145, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_noiseStep'), autoIndent=True}")) # from line 145, col 3.
write('''
''')
_v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([noiseVector],
"""_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);
""", basis = noiseVector.initialBasis)
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([noiseVector],\n """_${vector.id}[$index] = 0.5*(_${vector.id}[$index] + _${vector.id}2[$index]);\n """, basis = noiseVector.initialBasis), autoIndent=True}')) # from line 146, col 3.
write(''' _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 11
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 11.
write(''' = _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 149, col 32
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 149, col 32.
write(''';
''')
write('''}
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def integrateAdaptiveStepInnerLoopBegin(self, dict, **KWS):
## CHEETAH: generated from @def integrateAdaptiveStepInnerLoopBegin(dict) at line 156, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
integrator = dict['caller']
#
if not integrator.dynamicNoiseVectors: # generated from line 160, col 3
return
#
write('''if (_noise_list.empty()) {
// Noise list empty so start afresh
_noise_list.push_front(_dtdWstore());
_active_node = _noise_list.begin();
_active_node->_step = _step;
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 169, col 3
write('''
_active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 171, col 11
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 171, col 11.
write(''' = (''')
_v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 33
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 33.
write('''*) xmds_malloc(sizeof(''')
_v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 171, col 74
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 171, col 74.
write(''') * MAX(''')
_v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 171, col 101
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 171, col 101.
write(''',1));
_active_node->_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 18
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 18.
write(''' = _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 172, col 46
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 172, col 46.
write(''';
''')
_v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['evaluate'],"call",False)(_step = '_step') # "${noiseVector.functions['evaluate'].call(_step = '_step')}" on line 173, col 3
if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['evaluate'].call(_step = '_step')}")) # from line 173, col 3.
write('''
''')
write('''} else if (_step*(1.0 + _EPSILON) < _noise_list.begin()->_step) {
// Create new smallest time step
// If the step is greater than 50% of the current smallest step size
// then we should just use half the step size because we are going to have
// to do the other half at some point too.
const real _old_smallest_step = _noise_list.begin()->_step;
if (_step > 0.5*_old_smallest_step*(1.0 + _EPSILON))
_step = 0.5*_old_smallest_step;
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 187, col 3
# It is necessary to transform the noise vector back to its original basis, as it may have been transformed in the mean time.
write(''' ''')
_v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}' on line 189, col 3
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent=True}')) # from line 189, col 3.
write(''' _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 190, col 11
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 190, col 11.
write(''' = (''')
_v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 32
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 32.
write('''*) xmds_malloc(sizeof(''')
_v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 190, col 73
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 190, col 73.
write(''') * MAX(''')
_v = VFFSL(SL,"noiseVector.allocSize",True) # '${noiseVector.allocSize}' on line 190, col 100
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.allocSize}')) # from line 190, col 100.
write(''',1));
''')
_v = VFN(VFN(VFFSL(SL,"noiseVector",True),"functions",True)['split'],"call",False)(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id) # "${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}" on line 191, col 3
if _v is not None: write(_filter(_v, rawExpr="${noiseVector.functions['split'].call(_new_step = '_step', _old_step = '_old_smallest_step', _old_array = '_noise_list.begin()->_' + noiseVector.id)}")) # from line 191, col 3.
write('''
''')
#
write(''' _noise_list.push_front(_dtdWstore());
_active_node = _noise_list.begin();
_active_node->_step = _step;
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 198, col 3
write(''' _active_node->_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 18
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 18.
write(''' = _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 199, col 46
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 199, col 46.
write(''';
''')
write('''} else {
// Use step already attempted
for (_active_node = _noise_list.begin(); (_active_node != _noise_list.end()) && (_active_node->_step <= _step*(1.0 + _EPSILON)); _active_node++)
;
_active_node--;
_step = _active_node->_step;
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 208, col 3
write(''' _active_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 11
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 11.
write(''' = _active_node->_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 209, col 46
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 209, col 46.
write(''';
''')
if noiseVector.needsTransforms: # generated from line 210, col 5
write(''' _''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 211, col 4
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 211, col 4.
write('''_basis = ''')
_v = VFFSL(SL,"basisIndexForBasis",False)(noiseVector.initialBasis) # '${basisIndexForBasis(noiseVector.initialBasis)}' on line 211, col 30
if _v is not None: write(_filter(_v, rawExpr='${basisIndexForBasis(noiseVector.initialBasis)}')) # from line 211, col 30.
write(''';
''')
write('''
if ( _break_next && !((_''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 27
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 27.
write('''_local + _step)*(1.0 + _EPSILON) >= _''')
_v = VFFSL(SL,"propagationDimension",True) # '${propagationDimension}' on line 215, col 87
if _v is not None: write(_filter(_v, rawExpr='${propagationDimension}')) # from line 215, col 87.
write('''_break_next))
_break_next = false;
}
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def adaptiveStepSucceeded(self, dict, **KWS):
## CHEETAH: generated from @def adaptiveStepSucceeded(dict) at line 222, col 1.
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
#
integrator = dict['caller']
#
if not integrator.dynamicNoiseVectors: # generated from line 226, col 3
return
#
write('''
// Trim dtdW tree
_active_node++;
if (_active_node == _noise_list.end())
_noise_list.clear();
else {
for (list<_dtdWstore>::iterator _temp_iter = _active_node; _temp_iter != _noise_list.end(); _temp_iter++) {
_temp_iter->_step -= _step;
real _temp_step = _temp_iter->_step;
''')
for noiseVector in integrator.dynamicNoiseVectors: # generated from line 240, col 3
# The noise vector must be transformed back to its initial basis in case it has been transformed during the integration step.
write(''' ''')
_v = VFFSL(SL,"transformVectorsToBasis",False)([noiseVector], noiseVector.initialBasis) # '${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}' on line 242, col 5
if _v is not None: write(_filter(_v, autoIndent = True, rawExpr='${transformVectorsToBasis([noiseVector], noiseVector.initialBasis), autoIndent = True}')) # from line 242, col 5.
write(''' ''')
_v = VFFSL(SL,"noiseVector.type",True) # '${noiseVector.type}' on line 243, col 5
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.type}')) # from line 243, col 5.
write('''* _temp_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 32
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 32.
write(''' = _temp_iter->_''')
_v = VFFSL(SL,"noiseVector.id",True) # '${noiseVector.id}' on line 243, col 65
if _v is not None: write(_filter(_v, rawExpr='${noiseVector.id}')) # from line 243, col 65.
write(''';
''')
_v = VFFSL(SL,"loopOverVectorsWithInnerContentTemplate",False)([VFFSL(SL,"noiseVector",True)],
"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;
""")
if _v is not None: write(_filter(_v, autoIndent=True, rawExpr='${loopOverVectorsWithInnerContentTemplate([$noiseVector],\n"""_temp_${vector.id}[$index] = (_temp_${vector.id}[$index]*(_temp_step + _step) - _active_${vector.id}[$index]*_step)/_temp_step;\n"""), autoIndent=True}')) # from line 244, col 5.
write(''' }
_noise_list.erase(_noise_list.begin(), _active_node);
}
''')
#
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
def writeBody(self, **KWS):
## CHEETAH: main method generated for this template
trans = KWS.get("trans")
if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)):
trans = self.transaction # is None unless self.awake() was called
if not trans:
trans = DummyTransaction()
_dummyTrans = True
else: _dummyTrans = False
write = trans.response().write
SL = self._CHEETAH__searchList
_filter = self._CHEETAH__currentFilter
########################################
## START - generated method body
write('''
''')
#
# Stochastic.tmpl
#
# Created by Graham Dennis on 2007-12-11.
#
# Copyright (c) 2007-2012, Graham Dennis and Joe Hope
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
write('''
''')
#
# Globals
write('''
''')
########################################
## END - generated method body
return _dummyTrans and trans.response().getvalue() or ""
##################################################
## CHEETAH GENERATED ATTRIBUTES
_CHEETAH__instanceInitialized = False
_CHEETAH_version = __CHEETAH_version__
_CHEETAH_versionTuple = __CHEETAH_versionTuple__
_CHEETAH_genTime = __CHEETAH_genTime__
_CHEETAH_genTimestamp = __CHEETAH_genTimestamp__
_CHEETAH_src = __CHEETAH_src__
_CHEETAH_srcLastModified = __CHEETAH_srcLastModified__
featureName = 'Stochastic'
uselib = ['randomisation_seeding']
_mainCheetahMethod_for_Stochastic = 'writeBody'
## END CLASS DEFINITION
if not hasattr(Stochastic, '_initCheetahAttributes'):
templateAPIClass = getattr(Stochastic,
'_CHEETAH_templateClass',
Template)
templateAPIClass._addCheetahPlumbingCodeToClass(Stochastic)
# CHEETAH was developed by Tavis Rudd and Mike Orr
# with code, advice and input from many other volunteers.
# For more information visit https://cheetahtemplate.org/
##################################################
## if run from command line:
if __name__ == '__main__':
from Cheetah.TemplateCmdLineIface import CmdLineIface
CmdLineIface(templateObj=Stochastic()).run()
|