File: tree.cpp

package info (click to toggle)
mothur 1.48.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,692 kB
  • sloc: cpp: 161,866; makefile: 122; sh: 31
file content (1113 lines) | stat: -rwxr-xr-x 39,515 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
/*
 *  tree.cpp
 *  Mothur
 *
 *  Created by Sarah Westcott on 1/22/09.
 *  Copyright 2009 Schloss Lab UMASS Amherst. All rights reserved.
 *
 */

#include "tree.h"

/*****************************************************************/
Tree::Tree(int num, CountTable* t, vector<string>& T) : ct(t) {
	try {
		m = MothurOut::getInstance();
		
		numLeaves = num;  
		numNodes = 2*numLeaves - 1;
        
		tree.resize(numNodes);
        Treenames = T;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "Tree - numNodes");
		exit(1);
	}
}
/*****************************************************************/
Tree::Tree(CountTable* t, vector<string>& Tnames) : ct(t) {
	try {
		m = MothurOut::getInstance();
        
        if (Tnames.size() == 0) {  m->mothurOut("[ERROR]: no valid treenames.\n"); m->setControl_pressed(true);   }
        Treenames = Tnames;
        
		numLeaves = Treenames.size();
		numNodes = 2*numLeaves - 1;
		
		tree.resize(numNodes);
			
		//initialize groupNodeInfo
        vector<string> namesOfGroups = ct->getNamesOfGroups();
		for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
		
		//initialize tree with correct number of nodes, name and group info.
		for (int i = 0; i < numNodes; i++) {
			//initialize leaf nodes
			if (i <= (numLeaves-1)) {
				tree[i].setName(Treenames[i]);
				
				//save group info
                int maxPars = 1;
				vector<string> group;
                vector<int> counts = ct->getGroupCounts(Treenames[i]);
				for (int j = 0; j < namesOfGroups.size(); j++) {  
                    if (counts[j] != 0) { //you have seqs from this group
                        groupNodeInfo[namesOfGroups[j]].push_back(i);
                        group.push_back(namesOfGroups[j]);
                        tree[i].pGroups[namesOfGroups[j]] = counts[j];
                        tree[i].pcount[namesOfGroups[j]] = counts[j];
                        //keep highest group
						if(counts[j] > maxPars){ maxPars = counts[j]; }
                    }  
                }
				tree[i].setGroup(group);
				setIndex(Treenames[i], i);
                
                if (maxPars > 1) { //then we have some more dominant groups
					//erase all the groups that are less than maxPars because you found a more dominant group.
					for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
						if(it->second < maxPars){
							tree[i].pGroups.erase(it++);
						}else { it++; }
					}
					//set one remaining groups to 1
					for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
						tree[i].pGroups[it->first] = 1;
					}
				}//end if
                
			//intialize non leaf nodes
			}else if (i > (numLeaves-1)) {
				tree[i].setName("");
				vector<string> tempGroups;
				tree[i].setGroup(tempGroups);
			}
		}
		
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "Tree");
		exit(1);
	}
}
/*****************************************************************/
Tree::Tree(CountTable* t, vector< vector<double> >& sims, vector<string>& Tnames) : ct(t) {
	try {
		m = MothurOut::getInstance();
		
		if (Tnames.size() == 0) {  m->mothurOut("[ERROR]: no valid treenames.\n"); m->setControl_pressed(true);   }
        Treenames = Tnames;
        
		numLeaves = Treenames.size();
		numNodes = 2*numLeaves - 1;
		
		tree.resize(numNodes);
        
		//initialize groupNodeInfo
        vector<string> namesOfGroups = ct->getNamesOfGroups();
		for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
		
		//initialize tree with correct number of nodes, name and group info.
		for (int i = 0; i < numNodes; i++) {
			//initialize leaf nodes
			if (i <= (numLeaves-1)) {
				tree[i].setName(Treenames[i]);
				
				//save group info
                int maxPars = 1;
				vector<string> group;
                vector<int> counts = ct->getGroupCounts(Treenames[i]);
				for (int j = 0; j < namesOfGroups.size(); j++) {  
                    if (counts[j] != 0) { //you have seqs from this group
                        groupNodeInfo[namesOfGroups[j]].push_back(i);
                        group.push_back(namesOfGroups[j]);
                        tree[i].pGroups[namesOfGroups[j]] = counts[j];
                        tree[i].pcount[namesOfGroups[j]] = counts[j];
                        //keep highest group
						if(counts[j] > maxPars){ maxPars = counts[j]; }
                    }  
                }
				tree[i].setGroup(group);
				setIndex(Treenames[i], i);
                
                if (maxPars > 1) { //then we have some more dominant groups
					//erase all the groups that are less than maxPars because you found a more dominant group.
					for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
						if(it->second < maxPars){
							tree[i].pGroups.erase(it++);
						}else { it++; }
					}
					//set one remaining groups to 1
					for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
						tree[i].pGroups[it->first] = 1;
					}
				}//end if
                
                //intialize non leaf nodes
			}else if (i > (numLeaves-1)) {
				tree[i].setName("");
				vector<string> tempGroups;
				tree[i].setGroup(tempGroups);
			}
		}

        
        //build tree from matrix
        //initialize indexes
        map<int, int> thisIndexes;  //maps row in simMatrix to vector index in the tree
        for (int g = 0; g < numLeaves; g++) {	thisIndexes[g] = g;	}
		
		//do merges and create tree structure by setting parents and children
		//there are numGroups - 1 merges to do
		for (int i = 0; i < (numLeaves - 1); i++) {
			float largest = -1000.0;
			
			if (m->getControl_pressed()) { break; }
			
            int row, column; row = 1; column = 0;
			//find largest value in sims matrix by searching lower triangle
			for (int j = 1; j < sims.size(); j++) {
				for (int k = 0; k < j; k++) {
					if (sims[j][k] > largest) {  largest = sims[j][k]; row = j; column = k;  }
				}
			}
            
			//set non-leaf node info and update leaves to know their parents
			//non-leaf
			tree[numLeaves + i].setChildren(thisIndexes[row], thisIndexes[column]);
			
			//parents
			tree[thisIndexes[row]].setParent(numLeaves + i);
			tree[thisIndexes[column]].setParent(numLeaves + i);
			
			//blength = distance / 2;
			float blength = ((1.0 - largest) / 2);
			
			//branchlengths
			tree[thisIndexes[row]].setBranchLength(blength - tree[thisIndexes[row]].getLengthToLeaves());
			tree[thisIndexes[column]].setBranchLength(blength - tree[thisIndexes[column]].getLengthToLeaves());
			
			//set your length to leaves to your childs length plus branchlength
			tree[numLeaves + i].setLengthToLeaves(tree[thisIndexes[row]].getLengthToLeaves() + tree[thisIndexes[row]].getBranchLength());
			
			
			//update index 
			thisIndexes[row] = numLeaves+i;
			thisIndexes[column] = numLeaves+i;
			
			//remove highest value that caused the merge.
			sims[row][column] = -1000.0;
			sims[column][row] = -1000.0;
			
			//merge values in simsMatrix
			for (int n = 0; n < sims.size(); n++)	{
				//row becomes merge of 2 groups
				sims[row][n] = (sims[row][n] + sims[column][n]) / 2;
				sims[n][row] = sims[row][n];
				//delete column
				sims[column][n] = -1000.0;
				sims[n][column] = -1000.0;
			}
		}
		
		//adjust tree to make sure root to tip length is .5
		int root = findRoot();
		tree[root].setBranchLength((0.5 - tree[root].getLengthToLeaves()));
        
    }
	catch(exception& e) {
		m->errorOut(e, "Tree", "Tree");
		exit(1);
	}
}
/*****************************************************************/
Tree::~Tree() { }
/*****************************************************************/
int Tree::getIndex(string searchName) {
	try {
        map<string, int>::iterator itIndex = indexes.find(searchName);
        if (itIndex != indexes.end()) {
            return itIndex->second;
        }
		return -1;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "getIndex");
		exit(1);
	}
}
/*****************************************************************/

void Tree::setIndex(string searchName, int index) {
	try {
		map<string, int>::iterator itIndex = indexes.find(searchName);
        if (itIndex == indexes.end()) {
            indexes[searchName] = index;
        }
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "setIndex");
		exit(1);
	}
}
/*****************************************************************/
int Tree::assembleTree() {
	try {
        //initialize groupNodeInfo
        for (int i = 0; i < (ct->getNamesOfGroups()).size(); i++) { groupNodeInfo[(ct->getNamesOfGroups())[i]].resize(0); }
        
		//build the pGroups in non leaf nodes to be used in the parsimony calcs.
		for (int i = numLeaves; i < numNodes; i++) {
			if (m->getControl_pressed()) { return 1; }

			tree[i].pGroups = (mergeGroups(i));
			tree[i].pcount = (mergeGcounts(i));
		}
        
        for(int i = 0; i < numLeaves; i++){ for (int k = 0; k < (tree[i].getGroup()).size(); k++) {  groupNodeInfo[(tree[i].getGroup())[k]].push_back(i); } }
		
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "assembleTree");
		exit(1);
	}
}
/*****************************************************************/
//assumes leaf node names are in seqs and no names file - used by indicator command and subsample
void Tree::getSubTree(Tree* Ctree, vector<string> seqs) {
	try {
        
        //copy Tree since we are going to destroy it
        vector<string> T = Ctree->getTreeNames();
        Tree* copy = new Tree(ct, T);
        copy->getCopy(Ctree);
        copy->assembleTree();
        
		//we want to select some of the leaf nodes to create the output tree
		//go through the input Tree starting at parents of leaves
        //initialize groupNodeInfo
        vector<string> namesOfGroups = ct->getNamesOfGroups();
		for (int i = 0; i < namesOfGroups.size(); i++) {  groupNodeInfo[namesOfGroups[i]].resize(0);  }
		
		//initialize tree with correct number of nodes, name and group info.
        for (int i = 0; i < numNodes; i++) {
            //initialize leaf nodes
            if (i <= (numLeaves-1)) {
                tree[i].setName(seqs[i]);
                
                //save group info
                int maxPars = 1;
                vector<string> group;
                vector<int> counts = ct->getGroupCounts(seqs[i]);
                for (int j = 0; j < namesOfGroups.size(); j++) {
                    if (counts[j] != 0) { //you have seqs from this group
                        groupNodeInfo[namesOfGroups[j]].push_back(i);
                        group.push_back(namesOfGroups[j]);
                        tree[i].pGroups[namesOfGroups[j]] = counts[j];
                        tree[i].pcount[namesOfGroups[j]] = counts[j];
                        //keep highest group
                        if(counts[j] > maxPars){ maxPars = counts[j]; }
                    }
                }
                tree[i].setGroup(group);
                setIndex(seqs[i], i);
                
                if (maxPars > 1) { //then we have some more dominant groups
                    //erase all the groups that are less than maxPars because you found a more dominant group.
                    for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();){
                        if(it->second < maxPars){
                            tree[i].pGroups.erase(it++);
                        }else { it++; }
                    }
                    //set one remaining groups to 1
                    for(it=tree[i].pGroups.begin();it!=tree[i].pGroups.end();it++){
                        tree[i].pGroups[it->first] = 1;
                    }
                }//end if
                
                //intialize non leaf nodes
            }else if (i > (numLeaves-1)) {
                tree[i].setName("");
                vector<string> tempGroups;
                tree[i].setGroup(tempGroups);
            }
        }
        
        pruneNewTree(copy, seqs);
		
		int root = 0;
		for (int i = 0; i < copy->getNumNodes(); i++) {
			//you found the root
			if (copy->tree[i].getParent() == -1) { root = i; break; }
		}
        
		int nextSpot = numLeaves;
		populateNewTree(copy->tree, root, nextSpot);
        
        //update treenames to reflect who is still in tree
        Treenames = seqs;
        
        delete copy;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "getSubTree");
		exit(1);
	}
}
/*****************************************************************/
void Tree::pruneNewTree(Tree* copy, vector<string> namesToInclude) {
    try {
        
        Utils util;
        set<int> removedLeaves;
        for (int i = 0; i < copy->getNumLeaves(); i++) {
            
            if (removedLeaves.count(i) == 0) {
                
                //am I in the group
                int parent = copy->tree[i].getParent();
                
                if (parent != -1) {
                    
                    if (util.inUsersGroups(copy->tree[i].getName(), namesToInclude)) {
                        //find my siblings name
                        int parentRC = copy->tree[parent].getRChild();
                        int parentLC = copy->tree[parent].getLChild();
                        
                        //if I am the right child, then my sib is the left child
                        int sibIndex = parentRC;
                        if (parentRC == i) { sibIndex = parentLC; }
                        
                        string sibsName = copy->tree[sibIndex].getName();
                        
                        //if yes, is my sibling
                        if ((util.inUsersGroups(sibsName, namesToInclude)) || (sibsName == "")) {
                            //we both are okay no trimming required
                        }else{
                            //i am, my sib is not, so remove sib by setting my parent to my grandparent
                            int grandparent = copy->tree[parent].getParent();
                            int grandparentLC = copy->tree[grandparent].getLChild();
                            int grandparentRC = copy->tree[grandparent].getRChild();
                            
                            //whichever of my granparents children was my parent now equals me
                            if (grandparentLC == parent) { grandparentLC = i; }
                            else { grandparentRC = i; }
                            
                            copy->tree[i].setParent(grandparent);
                            copy->tree[i].setBranchLength((copy->tree[i].getBranchLength()+copy->tree[parent].getBranchLength()));
                            if (grandparent != -1) {
                                copy->tree[grandparent].setChildren(grandparentLC, grandparentRC);
                            }
                            removedLeaves.insert(sibIndex);
                        }
                    }else{
                        //find my siblings name
                        int parentRC = copy->tree[parent].getRChild();
                        int parentLC = copy->tree[parent].getLChild();
                        
                        //if I am the right child, then my sib is the left child
                        int sibIndex = parentRC;
                        if (parentRC == i) { sibIndex = parentLC; }
                        
                        string sibsName = copy->tree[sibIndex].getName();
                        
                        //if no is my sibling
                        if ((util.inUsersGroups(sibsName, namesToInclude)) || (sibsName == "")) {
                            //i am not, but my sib is
                            int grandparent = copy->tree[parent].getParent();
                            int grandparentLC = copy->tree[grandparent].getLChild();
                            int grandparentRC = copy->tree[grandparent].getRChild();
                            
                            //whichever of my granparents children was my parent now equals my sib
                            if (grandparentLC == parent) { grandparentLC = sibIndex; }
                            else { grandparentRC = sibIndex; }
                            
                            copy->tree[sibIndex].setParent(grandparent);
                            copy->tree[sibIndex].setBranchLength((copy->tree[sibIndex].getBranchLength()+copy->tree[parent].getBranchLength()));
                            if (grandparent != -1) {
                                copy->tree[grandparent].setChildren(grandparentLC, grandparentRC);
                            }
                            removedLeaves.insert(i);
                        }else{
                            //neither of us are, so we want to eliminate ourselves and our parent
                            //so set our parents sib to our great-grandparent
                            int parent = copy->tree[i].getParent();
                            int grandparent = copy->tree[parent].getParent();
                            int parentsSibIndex;
                            if (grandparent != -1) {
                                int greatgrandparent = copy->tree[grandparent].getParent();
                                int greatgrandparentLC, greatgrandparentRC;
                                if (greatgrandparent != -1) {
                                    greatgrandparentLC = copy->tree[greatgrandparent].getLChild();
                                    greatgrandparentRC = copy->tree[greatgrandparent].getRChild();
                                }
                                
                                int grandparentLC = copy->tree[grandparent].getLChild();
                                int grandparentRC = copy->tree[grandparent].getRChild();
                                
                                parentsSibIndex = grandparentLC;
                                if (grandparentLC == parent) { parentsSibIndex = grandparentRC; }
                                
                                //whichever of my greatgrandparents children was my grandparent
                                if (greatgrandparentLC == grandparent) { greatgrandparentLC = parentsSibIndex; }
                                else { greatgrandparentRC = parentsSibIndex; }
                                
                                copy->tree[parentsSibIndex].setParent(greatgrandparent);
                                copy->tree[parentsSibIndex].setBranchLength((copy->tree[parentsSibIndex].getBranchLength()+copy->tree[grandparent].getBranchLength()));
                                if (greatgrandparent != -1) {
                                    copy->tree[greatgrandparent].setChildren(greatgrandparentLC, greatgrandparentRC);
                                }
                            }else{
                                copy->tree[parent].setParent(-1);
                                
                            }
                            removedLeaves.insert(sibIndex);
                            removedLeaves.insert(i);
                        }
                    }
                }
            }
        }
        
        
    }
    catch(exception& e) {
        m->errorOut(e, "Tree", "pruneNewTree");
        exit(1);
    }
}
/*****************************************************************/
int Tree::populateNewTree(vector<Node>& oldtree, int node, int& index) {
	try {
		
		if (oldtree[node].getLChild() != -1) {
			int rc = populateNewTree(oldtree, oldtree[node].getLChild(), index);
			int lc = populateNewTree(oldtree, oldtree[node].getRChild(), index);

			tree[index].setChildren(lc, rc);
			tree[rc].setParent(index);
			tree[lc].setParent(index);
			
			tree[index].setBranchLength(oldtree[node].getBranchLength());
			tree[rc].setBranchLength(oldtree[oldtree[node].getLChild()].getBranchLength());
			tree[lc].setBranchLength(oldtree[oldtree[node].getRChild()].getBranchLength());
			
			return (index++);
		}else { //you are a leaf
			int indexInNewTree = getIndex(oldtree[node].getName());
			return indexInNewTree;
		}
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "populateNewTree");
		exit(1);
	}
}
/*****************************************************************/
void Tree::getCopy(Tree* copy, bool subsample) {
	try {
        
		//for each node in the tree copy its info
		for (int i = 0; i < numNodes; i++) {
			//copy branch length
			tree[i].setBranchLength(copy->tree[i].getBranchLength());
            
			//copy parent
			tree[i].setParent(copy->tree[i].getParent());
            
			//copy children
			tree[i].setChildren(copy->tree[i].getLChild(), copy->tree[i].getRChild());
        }
        
        //build the pGroups in non leaf nodes to be used in the parsimony calcs.
		for (int i = numLeaves; i < numNodes; i++) {
			if (m->getControl_pressed()) { break; }
            
			tree[i].pGroups = (mergeGroups(i));
			tree[i].pcount = (mergeGcounts(i));
		}
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "getCopy");
		exit(1);
	}
}
/*****************************************************************/
void Tree::getCopy(Tree* copy) {
	try {
	
		//for each node in the tree copy its info
		for (int i = 0; i < numNodes; i++) {
			//copy name
			tree[i].setName(copy->tree[i].getName());
		
			//copy group
			tree[i].setGroup(copy->tree[i].getGroup());
			
			//copy branch length
			tree[i].setBranchLength(copy->tree[i].getBranchLength());
		
			//copy parent
			tree[i].setParent(copy->tree[i].getParent());
		
			//copy children
			tree[i].setChildren(copy->tree[i].getLChild(), copy->tree[i].getRChild());
		
			//copy index in node and tmap
            setIndex(copy->tree[i].getName(), getIndex(copy->tree[i].getName()));
			tree[i].setIndex(copy->tree[i].getIndex());
			
			//copy pGroups
			tree[i].pGroups = copy->tree[i].pGroups;
		
			//copy pcount
			tree[i].pcount = copy->tree[i].pcount;
		}
		
		groupNodeInfo = copy->groupNodeInfo;
		
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "getCopy");
		exit(1);
	}
}
/*****************************************************************/
//returns a map with a groupname and the number of times that group was seen in the children
//for instance if your children are white and black then it would return a map with 2 entries
// p[white] = 1 and p[black] = 1.  Now go up a level and merge that with a node who has p[white] = 1
//and you get p[white] = 2, p[black] = 1, but you erase the p[black] because you have a p value higher than 1.

map<string, int> Tree::mergeGroups(int i) {
	try {
		int lc = tree[i].getLChild();
		int rc = tree[i].getRChild();

		//set parsimony groups to left child
		map<string,int> parsimony = tree[lc].pGroups;
		
		int maxPars = 1;

		//look at right child groups and update maxPars if right child has something higher for that group.
		for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();it++){
			it2 = parsimony.find(it->first);
			if (it2 != parsimony.end()) { parsimony[it->first]++;  }
			else { parsimony[it->first] = 1; }
			
			if(parsimony[it->first] > maxPars){ maxPars = parsimony[it->first]; }
		}
	
		// this is true if right child had a greater parsimony for a certain group
		if(maxPars > 1){
			//erase all the groups that are only 1 because you found something with 2.
			for(it=parsimony.begin();it!=parsimony.end();){
				if(it->second == 1){
					parsimony.erase(it++);
				}else { it++; }
			}
			//set one remaining groups to 1
			//so with our above example p[white] = 2 would be left and it would become p[white] = 1
			for(it=parsimony.begin();it!=parsimony.end();it++){ parsimony[it->first] = 1; }
		}
	
		return parsimony;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "mergeGroups");
		exit(1);
	}
}
/*****************************************************************/
//returns a map with a groupname and the number of times that group was seen in the children
//for instance if your children are white and black then it would return a map with 2 entries
// p[white] = 1 and p[black] = 1.  Now go up a level and merge that with a node who has p[white] = 1
//and you get p[white] = 2, p[black] = 1, but you erase the p[black] because you have a p value higher than 1.

map<string, int> Tree::mergeUserGroups(int i, vector<string> g) {
	try {
		int lc = tree[i].getLChild();
		int rc = tree[i].getRChild();
		
        Utils util;
		//loop through nodes groups removing the ones the user doesn't want
		for(it=tree[lc].pGroups.begin();it!=tree[lc].pGroups.end();){
				if (util.inUsersGroups(it->first, g) != true) {
					tree[lc].pGroups.erase(it++);
				}else { it++; }
		}

		//loop through nodes groups removing the ones the user doesn't want
		for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();){
				if (util.inUsersGroups(it->first, g) != true) {
					tree[rc].pGroups.erase(it++);
				}else { it++; }
		}

		//set parsimony groups to left child
		map<string,int> parsimony = tree[lc].pGroups;
		
		int maxPars = 1;

		//look at right child groups and update maxPars if right child has something higher for that group.
		for(it=tree[rc].pGroups.begin();it!=tree[rc].pGroups.end();it++){
			it2 = parsimony.find(it->first);
			if (it2 != parsimony.end()) {
				parsimony[it->first]++;
			}else {
				parsimony[it->first] = 1;
			}
			
			if(parsimony[it->first] > maxPars){
				maxPars = parsimony[it->first];
			}
		}
			
		// this is true if right child had a greater parsimony for a certain group
		if(maxPars > 1){
			//erase all the groups that are only 1 because you found something with 2.
			for(it=parsimony.begin();it!=parsimony.end();){
				if(it->second == 1){
					parsimony.erase(it++);
				}else { it++; }
			}

			for(it=parsimony.begin();it!=parsimony.end();it++){
				parsimony[it->first] = 1;
			}
		}		
		
		return parsimony;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "mergeUserGroups");
		exit(1);
	}
}
/**************************************************************************************************/

map<string,int> Tree::mergeGcounts(int position) {
	try{
		map<string,int>::iterator pos;
	
		int lc = tree[position].getLChild();
		int rc = tree[position].getRChild();
	
		map<string,int> sum = tree[lc].pcount;
    
		for(it=tree[rc].pcount.begin();it!=tree[rc].pcount.end();it++){ sum[it->first] += it->second; }
        
		return sum;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "mergeGcounts");
		exit(1);
	}
}
/**************************************************************************************************/
int Tree::randomLabels(vector<int>& nodesToSwap) {
    try {
        if (nodesToSwap.size() < 1)  {  return 0; } //nothing to swap
        
        for(int j = 0; j < nodesToSwap.size()-1;){
            
            if (m->getControl_pressed()) { break; }
            
            int z = nodesToSwap[j];
            int i = nodesToSwap[j+1];
    
            swapLabels(z,i);
            j += 2;
        }
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "Tree", "randomLabels");
        exit(1);
    }
}

/**************************************************************************************************/
//you only want to randomize the nodes that are from a group the user wants analyzed, so
//if either of the leaf nodes you are about to switch are not in the users groups then you don't want to switch them.
int Tree::swapLabels(int first, int second) {
    try {
        if ((first > numLeaves) || (second > numLeaves)) { m->mothurOut("[ERROR]: cannot swap tree indexes.\n"); m->setControl_pressed(true); return 0; }
        
        //switches node i and node z's info.
        map<string,int> lib_hold = tree[first].pGroups;
        tree[first].pGroups = (tree[second].pGroups);
        tree[second].pGroups = (lib_hold);
        
        vector<string> zgroup = tree[first].getGroup();
        tree[first].setGroup(tree[second].getGroup());
        tree[second].setGroup(zgroup);
        
        string zname = tree[first].getName();
        tree[first].setName(tree[second].getName());
        setIndex(tree[second].getName(), first);
        tree[second].setName(zname);
        setIndex(zname, second);
        
        map<string,int> gcount_hold = tree[first].pcount;
        tree[first].pcount = (tree[second].pcount);
        tree[second].pcount = (gcount_hold);
        
        return 1;
    }
    catch(exception& e) {
        m->errorOut(e, "Tree", "swapLabels");
        exit(1);
    }
}
/*************************************************************************************************/
void Tree::assembleRandomUnifracTree(vector<int> g) {
	randomLabels(g);
	assembleTree();
}
/*************************************************************************************************/
//for now it's just random topology but may become random labels as well later that why this is such a simple function now...
void Tree::assembleRandomTree(Utils* myUtil) {
	randomTopology(myUtil);
	assembleTree();
}
/**************************************************************************************************/

void Tree::randomTopology(Utils* myUtil) {
	try {
        for(int i=0;i<numNodes;i++)         { tree[i].setParent(-1);        }
        for(int i=numLeaves;i<numNodes;i++) { tree[i].setChildren(-1, -1);  }
        
        for(int i=numLeaves;i<numNodes;i++){
            int escape =0;
            int rnd_index1, rnd_index2;
            while(escape == 0){
                rnd_index1 = myUtil->getRandomIndex(i);
                if(tree[rnd_index1].getParent() == -1){escape = 1;}
            }
            
            escape = 0;
            while(escape == 0){
                rnd_index2 = myUtil->getRandomIndex(i);
                if(rnd_index2 != rnd_index1 && tree[rnd_index2].getParent() == -1){
                    escape = 1;
                }		
            }
            
            tree[i].setChildren(rnd_index1,rnd_index2);
            tree[i].setParent(-1);
            tree[rnd_index1].setParent(i);
            tree[rnd_index2].setParent(i);
        }
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "randomTopology");
		exit(1);
	}
}
/*****************************************************************/
vector<int> Tree::getNodes(vector<string> theseGroups) {
    try {
        set<int> nodes;
        for (int i = 0; i < theseGroups.size(); i++) {
            if (m->getControl_pressed()) { break; }
            
            map<string, vector<int> >::iterator it = groupNodeInfo.find(theseGroups[i]);
            if (it != groupNodeInfo.end()) {//we have nodes for this group
                for (int j = 0; j < (it->second).size(); j++) { nodes.insert((it->second)[j]); } //removes dups
            }
        }
        
        vector<int> uniqueNodes;
        for (set<int>::iterator it = nodes.begin(); it != nodes.end(); it++) { uniqueNodes.push_back(*it); }
        
        return uniqueNodes;
    }
    catch(exception& e) {
        m->errorOut(e, "Tree", "getNodes");
        exit(1);
    }
}
/*****************************************************************/
void Tree::print(ostream& out) {
	try {
		int root = findRoot();
		printBranch(root, out, "branch");
		out << ";" << endl;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "print");
		exit(1);
	}
}
/*****************************************************************/
void Tree::print(ostream& out, map<string, string> nameMap) {
	try {
		int root = findRoot();
		printBranch(root, out, nameMap);
		out << ";" << endl;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "print");
		exit(1);
	}
}
/*****************************************************************/
void Tree::print(ostream& out, string mode) {
	try {
		int root = findRoot();
		printBranch(root, out, mode);
		out << ";" << endl;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "print");
		exit(1);
	}
}
/*****************************************************************/
// This prints out the tree in Newick form.
void Tree::createNewickFile(string f) {
	try {
		int root = findRoot();
	
		filename = f;

        Utils util; util.openOutputFile(filename, out);
		
		printBranch(root, out, "branch");
		
		// you are at the end of the tree
		out << ";" << endl;
		out.close();
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "createNewickFile");
		exit(1);
	}
}

/*****************************************************************/
//This function finds the index of the root node.

int Tree::findRoot() {
	try {
		for (int i = 0; i < numNodes; i++) {
			//you found the root
			if (tree[i].getParent() == -1) { return i; }
			
		}
		return -1;
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "findRoot");
		exit(1);
	}
}
/*****************************************************************/
void Tree::printBranch(int node, ostream& out, map<string, string> names) {
try {
// you are not a leaf
		if (tree[node].getLChild() != -1) {
			out << "(";
			printBranch(tree[node].getLChild(), out, names);
			out << ",";
			printBranch(tree[node].getRChild(), out, names);
			out << ")";
			
            //if there is a branch length then print it
            if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                out << ":" << tree[node].getBranchLength();
            }
			
		}else { //you are a leaf
            map<string, string>::iterator itNames = names.find(tree[node].getName());
            Utils util;
            string outputString = "";
            if (itNames != names.end()) { 
                
                vector<string> dupNames;
                util.splitAtComma((itNames->second), dupNames);
                
                if (dupNames.size() == 1) {
                    outputString += tree[node].getName();
                    if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                        outputString += ":" + toString(tree[node].getBranchLength());
                    }
                }else {
                    outputString += "(";
                    
                    for (int u = 0; u < dupNames.size()-1; u++) {
                        outputString += dupNames[u];
                        
                        if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                            outputString += ":" + toString(0.0);
                        }
                        outputString += ",";
                    }
                    
                    outputString += dupNames[dupNames.size()-1];
                    if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                        outputString += ":" + toString(0.0);
                    }
                    
                    outputString += ")";
                    if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                        outputString += ":" + toString(tree[node].getBranchLength());
                    }
                }
            }else { 
                outputString = tree[node].getName();
                //if there is a branch length then print it
                if (!util.isEqual(tree[node].getBranchLength(), -1)) {
                    outputString += ":" + toString(tree[node].getBranchLength());
                }
                
                m->mothurOut("[ERROR]: " + tree[node].getName() + " is not in your namefile, please correct.\n");  
            }
                
            out << outputString;
		}
		
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "printBranch");
		exit(1);
	}
}
/*****************************************************************/
void Tree::printBranch(int node, ostream& out, string mode) {
    try {
        
        // you are not a leaf
		if (tree[node].getLChild() != -1) {
			out << "(";
			printBranch(tree[node].getLChild(), out, mode);
			out << ",";
			printBranch(tree[node].getRChild(), out, mode);
			out << ")";
			if (mode == "branch") {
				//if there is a branch length then print it
				if (!util.isEqual(tree[node].getBranchLength(), -1)) {
					out << ":" << tree[node].getBranchLength();
				}
			}else if (mode == "boot") {
				//if there is a label then print it
				if (tree[node].getLabel() != "") {
					out << tree[node].getLabel();
				}
			}else if (mode == "both") {
				if (tree[node].getLabel() != "") {
					out << tree[node].getLabel();
				}
				//if there is a branch length then print it
				if (!util.isEqual(tree[node].getBranchLength(), -1)) {
					out << ":" << tree[node].getBranchLength();
				}
			}
		}else { //you are a leaf
			vector<string> leafGroup = ct->getGroups(tree[node].getName());
			
			if (mode == "branch") {
				out << leafGroup[0]; 
				//if there is a branch length then print it
				if (!util.isEqual(tree[node].getBranchLength(), -1)) {
					out << ":" << tree[node].getBranchLength();
				}
			}else if (mode == "boot") {
				out << leafGroup[0]; 
				//if there is a label then print it
				if (tree[node].getLabel() != "") {
					out << tree[node].getLabel();
				}
			}else if (mode == "both") {
				out << tree[node].getName();
				if (tree[node].getLabel() != "") {
					out << tree[node].getLabel();
				}
				//if there is a branch length then print it
				if (!util.isEqual(tree[node].getBranchLength(), -1)) {
					out << ":" << tree[node].getBranchLength();
				}
			}
		}
		
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "printBranch");
		exit(1);
	}
}
/*****************************************************************/
void Tree::printBranch(int node, ostream& out, string mode, vector<Node>& theseNodes) {
	try {
		
		// you are not a leaf
		if (theseNodes[node].getLChild() != -1) {
			out << "(";
			printBranch(theseNodes[node].getLChild(), out, mode);
			out << ",";
			printBranch(theseNodes[node].getRChild(), out, mode);
			out << ")";
			if (mode == "branch") {
				//if there is a branch length then print it
				if (!util.isEqual(theseNodes[node].getBranchLength(), -1)) {
					out << ":" << theseNodes[node].getBranchLength();
				}
			}else if (mode == "boot") {
				//if there is a label then print it
				if (theseNodes[node].getLabel() != "") {
					out << theseNodes[node].getLabel();
				}
			}else if (mode == "both") {
				if (theseNodes[node].getLabel() != "") {
					out << theseNodes[node].getLabel();
				}
				//if there is a branch length then print it
				if (!util.isEqual(theseNodes[node].getBranchLength(), -1)) {
					out << ":" << theseNodes[node].getBranchLength();
				}
			}
		}else { //you are a leaf
			vector<string> leafGroup = ct->getGroups(theseNodes[node].getName());
			
			if (mode == "branch") {
				out << leafGroup[0]; 
				//if there is a branch length then print it
				if (!util.isEqual(theseNodes[node].getBranchLength(), -1)) {
					out << ":" << theseNodes[node].getBranchLength();
				}
			}else if (mode == "boot") {
				out << leafGroup[0]; 
				//if there is a label then print it
				if (theseNodes[node].getLabel() != "") {
					out << theseNodes[node].getLabel();
				}
			}else if (mode == "both") {
				out << theseNodes[node].getName();
				if (theseNodes[node].getLabel() != "") {
					out << theseNodes[node].getLabel();
				}
				//if there is a branch length then print it
				if (!util.isEqual(theseNodes[node].getBranchLength(), -1)) {
					out << ":" << theseNodes[node].getBranchLength();
				}
			}
		}
		
	}
	catch(exception& e) {
		m->errorOut(e, "Tree", "printBranch");
		exit(1);
	}
}
/*****************************************************************/
void Tree::printTree() {
	for(int i=0;i<numNodes;i++){
		cout << i << '\t';
		tree[i].printNode();
	}
}
/*******************************************************/