1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
# coding=utf-8
"""Tests for NaiveBayes module."""
import copy
import unittest
from Bio import NaiveBayes
# Importing NaiveBayes will itself raise MissingPythonDependencyError
# if NumPy is unavailable.
import numpy
try:
hash(numpy.float64(123.456))
except TypeError:
# Due to a bug in NumPy 1.12.1, this is unhashable under
# PyPy3.5 v5.7 beta - it has been fixed in NumPy
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Please update NumPy if you want to use Bio.NaiveBayes "
"(under this version numpy.float64 is unhashable)."
) from None
del numpy
class CarTest(unittest.TestCase):
def test_car_data(self):
"""Simple example using car data."""
# Car data from example 'Naive Bayes Classifier example'
# by Eric Meisner November 22, 2003
# http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf
xcar = [
["Red", "Sports", "Domestic"],
["Red", "Sports", "Domestic"],
["Red", "Sports", "Domestic"],
["Yellow", "Sports", "Domestic"],
["Yellow", "Sports", "Imported"],
["Yellow", "SUV", "Imported"],
["Yellow", "SUV", "Imported"],
["Yellow", "SUV", "Domestic"],
["Red", "SUV", "Imported"],
["Red", "Sports", "Imported"],
]
ycar = [
"Yes",
"No",
"Yes",
"No",
"Yes",
"No",
"Yes",
"No",
"No",
"Yes",
]
carmodel = NaiveBayes.train(xcar, ycar)
self.assertEqual(
"Yes", NaiveBayes.classify(carmodel, ["Red", "Sports", "Domestic"])
)
self.assertEqual(
"No", NaiveBayes.classify(carmodel, ["Red", "SUV", "Domestic"])
)
class NaiveBayesTest(unittest.TestCase):
def setUp(self):
# Using example from https://en.wikipedia.org/wiki/Naive_Bayes_classifier
# height (feet), weight (lbs), foot size (inches)
self.xs = [
[6, 180, 12],
[5.92, 190, 11],
[5.58, 170, 12],
[5.92, 165, 10],
[5, 100, 6],
[5.5, 150, 8],
[5.42, 130, 7],
[5.75, 150, 9],
]
self.ys = [
"male",
"male",
"male",
"male",
"female",
"female",
"female",
"female",
]
self.model = NaiveBayes.train(self.xs, self.ys)
self.test = [6, 130, 8]
def test_train_function_no_training_set(self):
self.assertRaises(ValueError, NaiveBayes.train, [], self.ys)
def test_train_function_input_lengths(self):
ys = copy.copy(self.ys)
ys.pop()
self.assertRaises(ValueError, NaiveBayes.train, self.xs, ys)
def test_train_function_uneven_dimension_of_training_set(self):
xs = copy.copy(self.xs)
xs[0] = [1]
self.assertRaises(ValueError, NaiveBayes.train, xs, self.ys)
def test_train_function_with_priors(self):
model = NaiveBayes.train(self.xs, self.ys, priors={"male": 0.1, "female": 0.9})
result = NaiveBayes.calculate(model, self.test, scale=True)
expected = -692.0
self.assertEqual(expected, round(result["male"]))
def test_classify_function(self):
expected = "female"
result = NaiveBayes.classify(self.model, self.test)
self.assertEqual(expected, result)
def test_calculate_function_wrong_dimensionality(self):
xs = self.xs[0]
xs.append(100)
self.assertRaises(ValueError, NaiveBayes.calculate, self.model, xs)
def test_calculate_function_with_scale(self):
result = NaiveBayes.calculate(self.model, self.test, scale=True)
expected = -689.0
self.assertEqual(expected, round(result["male"]))
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|